Least energy sign-changing solutions for fractional critical Kirchhoff-Schrodinger-Poisson with steep potential well

被引:4
作者
Feng, Shenghao [1 ]
Chen, Jianhua [1 ]
Sun, Jijiang [1 ]
Huang, Xianjiu [1 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff-Schrodinger-Poisson; Critical problem; Steep potential well; SYSTEM; EXISTENCE; EQUATIONS;
D O I
10.1007/s13540-023-00224-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following Kirchhoff-Schr & ouml;dinger-Poisson equation: { (a+b[u](2)s)(-Delta)su+V lambda(x)u+phi u=|u|(p-2)u+|u|(2)& lowast;s-2uinR(3), (-Delta)t phi=u2 inR(3) wheres is an element of(34,1),t is an element of(0,1),p>4,V lambda(x)=lambda V(x)+1 with lambda>0 and [u](2)s=integral R-3 integral R(3)u(x)-u(y)|(2)/|x-y|(3+2s) dxdy Under some conditions onV, when lambda>0 large enough andb>0 small enough,we use the deformation lemma and constrained minimization arguments to provethe existence of least energy sign-changing solutions. Additionally, we prove the leastenergy sign-changing solutions is strictly larger than twice that the ground state energy.In particular, a further analysis of the phenomenon of concentration for least energysign-changing solutions as lambda ->infinity andb -> 0.
引用
收藏
页码:124 / 156
页数:33
相关论文
共 28 条
[1]   Concentrating solutions for a fractional Kirchhoff equation with critical growth [J].
Ambrosio, Vincenzo .
ASYMPTOTIC ANALYSIS, 2020, 116 (3-4) :249-278
[2]   An existence result for a fractional Kirchhoff-Schrodinger-Poisson system [J].
Ambrosio, Vincenzo .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02)
[3]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[4]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[5]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[6]   SOME EXISTENCE RESULTS FOR SUPERLINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS INVOLVING CRITICAL EXPONENTS [J].
CERAMI, G ;
SOLIMINI, S ;
STRUWE, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 69 (03) :289-306
[7]   High energy solutions for the superlinear Schrodinger-Maxwell equations [J].
Chen, Shang-Jie ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4927-4934
[8]   On the planar Schrodinger-Poisson system with the axially symmetric potential [J].
Chen, Sitong ;
Tang, Xianhua .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) :945-976
[9]   Bound states for semilinear Schrodinger equations with sign-changing potential [J].
Ding, Yanheng ;
Szulkin, Andrzej .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (03) :397-419
[10]   VARIATIONAL AND TOPOLOGICAL METHODS IN PARTIALLY ORDERED HILBERT-SPACES [J].
HOFER, H .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :493-514