Artificial Intelligence in Pediatric Urology

被引:7
作者
Wang, Hsin-Hsiao Scott [1 ,4 ]
Vasdev, Ranveer [2 ]
Nelson, Caleb P. [3 ]
机构
[1] Boston Childrens Hosp, Dept Urol, Computat Healthcare Analyt Program, 300 Longwood Ave, Boston, MA USA
[2] Mayo Clin, Dept Urol, 200 1st St Southwest, Rochester, MN 55905 USA
[3] Boston Childrens Hosp, Dept Urol, Clin & Hlth Serv Res, 300 Longwood Ave, Boston, MA USA
[4] Boston Childrens Hosp, Dept Urol, Computat Healthcare Analyt Program, 300 Longwood Ave,HU390, Boston, MA 02115 USA
关键词
Artificial intelligence; Machine learning; Prediction; Model; Algorithm; Pediatric urology; URINARY-TRACT-INFECTION; VESICOURETERAL REFLUX; NEURAL-NETWORKS; CONFIDENCE-INTERVALS; ROC CURVE; CHILDREN; PREDICTION; MODEL; CLASSIFICATION; OBSTRUCTION;
D O I
10.1016/j.ucl.2023.08.002
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
[No abstract available]
引用
收藏
页码:91 / 103
页数:13
相关论文
共 47 条
[1]   Predicting posterior urethral obstruction in boys with lower urinary tract symptoms using deep artificial neural network [J].
Abdovic, S. ;
Cuk, M. ;
Cekada, N. ;
Milosevic, M. ;
Geljic, A. ;
Fusic, S. ;
Bastic, M. ;
Bahtijarevic, Z. .
WORLD JOURNAL OF UROLOGY, 2019, 37 (09) :1973-1979
[2]   Computer model predicting breakthrough febrile urinary tract infection in children with primary vesicoureteral reflux [J].
Arlen, Angela M. ;
Alexander, Siobhan E. ;
Wald, Moshe ;
Cooper, Christopher S. .
JOURNAL OF PEDIATRIC UROLOGY, 2016, 12 (05) :288.e1-288.e5
[3]   Automated Machine Learning Segmentation and Measurement of Urinary Stones on CT Scan [J].
Babajide, Rilwan ;
Lembrikova, Katerina ;
Ziemba, Justin ;
Ding, James ;
Li, Yuemeng ;
Fermin, Antoine Selman ;
Fan, Yong ;
Tasian, Gregory E. .
UROLOGY, 2022, 169 :41-46
[4]   Artificial neural networks in pediatric urology:: Prediction of sonographic outcome following pyeloplasty [J].
Bägli, DJ ;
Agarwal, SK ;
Venkateswaran, S ;
Shuckett, B ;
Khoury, AE ;
Merguerian, PA ;
McLorie, GA ;
Liu, K ;
Niederberger, CS .
JOURNAL OF UROLOGY, 1998, 160 (03) :980-983
[5]   Selecting Children with Vesicoureteral Reflux Who are Most Likely to Benefit from Antibiotic Prophylaxis: Application of Machine Learning to RIVUR [J].
Bertsimas, Dimitris ;
Li, Michael ;
Estrada, Carlos ;
Nelson, Caleb ;
Wang, Hsin-Hsiao Scott .
JOURNAL OF UROLOGY, 2021, 205 (04) :1170-1178
[6]  
Bertsimas D, 2019, J UROLOGY, V202, P144, DOI 10.1097/JU.0000000000000186
[7]   Deep learning enabled prediction of 5-year survival in pediatric genitourinary rhabdomyosarcoma [J].
Bhambhvani, Hriday P. ;
Zamora, Alvaro ;
Velaer, Kyla ;
Greenberg, Daniel R. ;
Sheth, Kunj R. .
SURGICAL ONCOLOGY-OXFORD, 2021, 36 :23-27
[8]   Early Detection of Ureteropelvic Junction Obstruction Using Signal Analysis and Machine Learning: A Dynamic Solution to a Dynamic Problem [J].
Blum, Emily S. ;
Porras, Antonio R. ;
Biggs, Elijah ;
Tabrizi, Pooneh R. ;
Sussman, Rachael D. ;
Sprague, Bruce M. ;
Shalaby-Rana, Eglal ;
Majd, Massoud ;
Pohl, Hans G. ;
Linguraru, Marius George .
JOURNAL OF UROLOGY, 2018, 199 (03) :847-852
[9]   Quantitative Ultrasound for Measuring Obstructive Severity in Children with Hydronephrosis [J].
Cerrolaza, Juan J. ;
Peters, Craig A. ;
Martin, Aaron D. ;
Myers, Emmarie ;
Safdar, Nabile ;
Linguraru, Marius George .
JOURNAL OF UROLOGY, 2016, 195 (04) :1093-1098
[10]   Current status of artificial intelligence applications in urology and their potential to influence clinical practice [J].
Chen, Jian ;
Remulla, Daphne ;
Nguyen, Jessica H. ;
Aastha, D. ;
Liu, Yan ;
Dasgupta, Prokar ;
Hung, Andrew J. .
BJU INTERNATIONAL, 2019, 124 (04) :567-577