Effect of the isotope mass on pedestal structure, transport and stability in D, D/T and T plasmas at similar β N and gas rate in JET-ILW type I ELMy H-modes

被引:27
作者
Frassinetti, L. [1 ]
Von Thun, C. Perez [2 ]
Chapman-Oplopoiou, B. [3 ]
Nystrom, H. [1 ]
Poradzinski, M. [3 ]
Hillesheim, J. C. [3 ]
Horvath, L. [3 ]
Maggi, C. F. [3 ]
Saarelma, S. [3 ]
Stagni, A. [4 ,5 ]
Szepesi, G. [3 ]
Bleasdale, A. [3 ]
Chomiczewska, A. [2 ]
Morales, R. B. [3 ]
Brix, M. [3 ]
Carvalho, P. [3 ]
Dunai, D. [6 ]
Field, A. R. [3 ]
Fontdecaba, J. M. [7 ]
Sun, H. J. [3 ]
King, D. B. [3 ]
Kos, D. [3 ]
Kowalska, E. [2 ]
Labit, B. [8 ]
Lennholm, M. [3 ]
Menmuir, S. [3 ]
Rachlew, E. [1 ]
Refy, D. I. [6 ]
Schneider, P. A. [9 ]
Solano, E. R. [6 ]
Vianello, N. [4 ,10 ]
Vecsei, M. [6 ]
机构
[1] KTH Royal Inst Technol, Div Fus Plasma Phys, Stockholm, Sweden
[2] Inst Plasma Phys & Laser Microfus IPPLM, Hery 23, PL-01497 Warsaw, Poland
[3] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, North Ireland
[4] Univ Padua, CNR, ENEA, Consorzio RFX,INFN,Acciaierie Venete Spa, C so Stati Uniti 4, I-35127 Padua, Italy
[5] Univ Padua, CRF, Padua, Italy
[6] Ctr Energy Res, Budapest, Hungary
[7] Lab Nacl Fus, CIEMAT, Madrid, Spain
[8] Ecole Polytech Fed Lausanne EPFL, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
[9] Max Planck Inst Plasma Phys, Garching, Germany
[10] Ist Sci & Tecnol Plasmi, CNR, Padua, Italy
关键词
pedestal; stability; tritium; deuterium/tritium; JET-ILW; isotope effect; CONFINEMENT; INSTABILITIES; PHYSICS; ENERGY;
D O I
10.1088/1741-4326/acf057
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The work describes the pedestal structure, transport and stability in an effective mass (A eff) scan from pure deuterium to pure tritium plasmas using a type I ELMy H-mode dataset in which key parameters that affect the pedestal behaviour (normalized pressure, ratio of the separatrix density to the pedestal density, pedestal ion Larmor radius, pedestal collisionality and rotation) are kept as constant as possible. Experimental results show a significant increase of the density at the pedestal top with increasing A eff, a modest reduction in the temperature and an increase in the pressure. The variations in the pedestal heights are mainly due to a change in the pedestal gradients while only small differences are observed in the pedestal width. A clear increase in the pedestal density and pressure gradients are observed from deuterium to tritium. The experimental results suggest a reduction of the pedestal inter-edge localized mode (inter-ELM) transport from deuterium to tritium. The reduction is likely in the pedestal inter-ELM particle transport, as suggested by the clear increase of the pedestal density gradients. The experimental results suggest also a possible reduction of the pedestal inter-ELM heat transport, however, the large experimental uncertainties do not allow conclusive claims on the heat diffusivity. The clear experimental reduction of eta e (the ratio between density and temperature gradient lengths) in the middle/top of the pedestal with increasing A eff suggests that there may be a link between increasing A eff and the reduction of electron scale turbulent transport. From the modelling point of view, an initial characterization of the behaviour of pedestal microinstabilities shows that the tritium plasma is characterized by growth rates lower than the deuterium plasmas. The pedestal stability of peeling-ballooning modes is assessed with both ideal and resistive magnetohydrodynamics (MHD). No significant effect of the isotope mass on the pedestal stability is observed using ideal MHD. Instead, resistive MHD shows a clear increase of the stability with increasing isotope mass. The resistive MHD results are in reasonable agreement with the experimental results of the normalized pedestal pressure gradient. The experimental and modelling results suggest that the main candidates to explain the change in the pedestal are a reduction in the inter-ELM transport and an improvement of the pedestal stability from deuterium to tritium.
引用
收藏
页数:30
相关论文
共 90 条
[1]   Numerical analysis of ELM stability with rotation and ion diamagnetic drift effects in JET [J].
Aiba, N. ;
Giroud, C. ;
Honda, M. ;
Delabie, E. ;
Saarelma, S. ;
Frassinetti, L. ;
Lupelli, I. ;
Casson, F. J. ;
Pamela, S. ;
Urano, H. ;
Maggi, C. F. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. ;
Ash, A. ;
Ashikawa, N. ;
Aslanyan, V. ;
Asunta, O. ;
Auriemma, F. .
NUCLEAR FUSION, 2017, 57 (12)
[2]  
Aiba N., 2018, Nucl. Fusion, V60, DOI [10.1088/1361-6587/aa8bec, DOI 10.1088/1361-6587/AA8BEC]
[3]  
[Anonymous], 1989, NUCL FUSION, V29, P1959, DOI 10.1088/0029-5515/29/11/010
[4]   THE ISOTOPE EFFECT IN ASDEX [J].
BESSENRODTWEBERPALS, M ;
WAGNER, F .
NUCLEAR FUSION, 1993, 33 (08) :1205-1238
[5]   Global and pedestal confinement in JET with a Be/W metallic wall [J].
Beurskens, M. N. A. ;
Frassinetti, L. ;
Challis, C. ;
Giroud, C. ;
Saarelma, S. ;
Alper, B. ;
Angioni, C. ;
Bilkova, P. ;
Bourdelle, C. ;
Brezinsek, S. ;
Buratti, P. ;
Calabro, G. ;
Eich, T. ;
Flanagan, J. ;
Giovannozzi, E. ;
Groth, M. ;
Hobirk, J. ;
Joffrin, E. ;
Leyland, M. J. ;
Lomas, P. ;
de la Luna, E. ;
Kempenaars, M. ;
Maddison, G. ;
Maggi, C. ;
Mantica, P. ;
Maslov, M. ;
Matthews, G. ;
Mayoral, M-L ;
Neu, R. ;
Nunes, I. ;
Osborne, T. ;
Rimini, F. ;
Scannell, R. ;
Solano, E. R. ;
Snyder, P. B. ;
Voitsekhovitch, I. ;
de Vries, Peter .
NUCLEAR FUSION, 2014, 54 (04)
[6]   'Quasi-local' wave equations in toroidal geometry with applications to fast wave propagation and absorption at high harmonics of the ion cyclotron frequency [J].
Brambilla, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 (11) :2423-2443
[7]   Fuel retention studies with the ITER-Like Wall in JET [J].
Brezinsek, S. ;
Loarer, T. ;
Philipps, V. ;
Esser, H. G. ;
Gruenhagen, S. ;
Smith, R. ;
Felton, R. ;
Banks, J. ;
Belo, P. ;
Boboc, A. ;
Bucalossi, J. ;
Clever, M. ;
Coenen, J. W. ;
Coffey, I. ;
Devaux, S. ;
Douai, D. ;
Freisinger, M. ;
Frigione, D. ;
Groth, M. ;
Huber, A. ;
Hobirk, J. ;
Jachmich, S. ;
Knipe, S. ;
Krieger, K. ;
Kruezi, U. ;
Marsen, S. ;
Matthews, G. F. ;
Meigs, A. G. ;
Nave, F. ;
Nunes, I. ;
Neu, R. ;
Roth, J. ;
Stamp, M. F. ;
Vartanian, S. ;
Samm, U. .
NUCLEAR FUSION, 2013, 53 (08)
[8]   The role of ETG modes in JET-ILW pedestals with varying levels of power and fuelling [J].
Chapman-Oplopoiou, B. ;
Hatch, D. R. ;
Field, A. R. ;
Frassinetti, L. ;
Hillesheim, J. C. ;
Horvath, L. ;
Maggi, C. F. ;
Parisi, J. F. ;
Roach, C. M. ;
Saarelma, S. ;
Walker, J. .
NUCLEAR FUSION, 2022, 62 (08)
[9]   Plasma confinement in JET H mode plasmas with H, D, DT and T isotopes [J].
Cordey, JG ;
Balet, B ;
Barlett, DV ;
Budny, RV ;
Christiansen, JP ;
Conway, GD ;
Eriksson, LG ;
Fishpool, GM ;
Gowers, CW ;
de Haas, JCM ;
Harbour, PJ ;
Horton, LD ;
Howman, AC ;
Jacquinot, J ;
Kerner, W ;
Lowry, CG ;
Monk, RD ;
Nielsen, P ;
Righi, E ;
Rimini, FG ;
Saibene, G ;
Sartori, R ;
Schunke, B ;
Sips, ACC ;
Smith, RJ ;
Stamp, MF ;
Start, DFH ;
Thomsen, K ;
Tubbing, BJD ;
von Hellermann, MG .
NUCLEAR FUSION, 1999, 39 (03) :301-308
[10]   Impact of divertor configuration on recycling neutral fluxes for ITER-like wall in JET H-mode plasmas [J].
de la Cal, E. ;
Losada, U. ;
Martin de Aguilera, A. ;
Shaw, A. ;
Solano, E. ;
Alegre, D. ;
Balboa, I ;
Carvalho, P. ;
Gaspar, J. ;
Borodkina, I ;
Brezinsek, S. ;
Douai, D. ;
Giroud, C. ;
Guillemaut, C. ;
Hidalgo, C. ;
Huber, A. ;
Joffrin, E. ;
Loarer, T. ;
de la Luna, E. ;
Manzanaresl, A. ;
Militello, F. ;
de Pablos, L. ;
Wiesen, S. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (03)