Insights into SnO2 Nanoparticles Supported on Fibrous Mesoporous Silica for CO Catalytic Oxidation

被引:1
作者
Li, Guobo [1 ]
Zhang, Yingying [1 ]
Yan, Jie [1 ]
Luo, Yiwei [1 ]
Wang, Conghui [2 ]
Feng, Weiwei [1 ]
Zhang, Shule [3 ]
Liu, Wenming [2 ]
Zhang, Zehui [4 ]
Peng, Honggen [1 ]
机构
[1] Nanchang Univ, Sch Resources & Environm, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Sch Chem & Chem Engn, Nanchang 330031, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Peoples R China
[4] Cent South Natl Univ, Sch Chem & Mat Sci, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
CO catalytic oxidation; SnO2; nanoparticles; DFT; reaction mechanism; SURFACE; PERFORMANCE; CONFINEMENT; STABILITY; STRATEGY; OXYGEN;
D O I
10.3390/catal13081156
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A large surface area dendritic mesoporous silica material (KCC-1) was successfully synthesized and used as a support to confine SnO2 nanoparticles (NPs). Owing to the large specific surface area and abundant mesoporous structure of dendritic KCC-1, the SnO2 NPs were highly dispersed, resulting in significantly improved CO catalytic oxidation activity. The obtained Sn-x/KCC-1 catalysts (x represents the mass fraction of SnO2 loading) exhibited excellent CO catalytic activity, with the Sn7@KCC-1 catalyst achieving 90% CO conversion at about 175 degrees C. The SnO2 NPs on the KCC-1 surface in a highly dispersed amorphous form, as well as the excellent interaction between SnO2 NPs and KCC-1, positively contributed to the catalytic removal process of CO on the catalyst surface. The CO catalytic removal pathway was established through a combination of in situ diffuse reflectance infrared transform spectroscopy and density-functional theory calculations, revealing the sequential steps: (1) CO -> CO3ads2-, (2) CO3ads2- -> CO2free+SnOx-1, (3) SnOx-1+O-2 -> SnOx+1. This study provides valuable insights into the design of high-efficiency non-precious metal catalysts for CO catalytic oxidation catalysts with high efficiency.
引用
收藏
页数:13
相关论文
共 40 条
[1]   Highly Water-Resistant La-Doped Co3O4 Catalyst for CO Oxidation [J].
Bae, Junemin ;
Shin, Dongjae ;
Jeong, Hojin ;
Kim, Beom-Sik ;
Han, Jeong Woo ;
Lee, Hyunjoo .
ACS CATALYSIS, 2019, 9 (11) :10093-10100
[2]   Nickel-Silicide Colloid Prepared under Mild Conditions as a Versatile Ni Precursor for More Efficient CO2 Reforming of CH4 Catalysts [J].
Baudouin, David ;
Szeto, Kai Chung ;
Laurent, Pierre ;
De Mallmann, Aimery ;
Fenet, Bernard ;
Veyre, Laurent ;
Rodemerck, Uwe ;
Coperet, Christophe ;
Thieuleux, Chloe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) :20624-20627
[3]   Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane [J].
Bian, Zhoufeng ;
Suryawinata, Ivan Yulian ;
Kawi, Sibudjing .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 195 :1-8
[4]   CO oxidation over Pd supported catalysts -In situ study of the electric and catalytic properties [J].
Bratan, V. ;
Munteanu, C. ;
Hornoiu, C. ;
Vasile, A. ;
Papa, F. ;
State, R. ;
Preda, S. ;
Culita, D. ;
Ionescu, N. I. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 207 :166-173
[5]   The Catalytic Performance of CO Oxidation over MnOx-ZrO2 Catalysts: The Role of Synthetic Routes [J].
Bulavchenko, Olga A. ;
Konovalova, Valeriya P. ;
Saraev, Andrey A. ;
Kremneva, Anna M. ;
Rogov, Vladimir A. ;
Gerasimov, Evgeny Yu. ;
Afonasenko, Tatyana N. .
CATALYSTS, 2023, 13 (01)
[6]   Focus on the modified CexZr1-xO2 with the rigid benzene-muti-carboxylate ligands and its catalysis in oxidation of NO [J].
Cai, Wei ;
Zhong, Qin ;
Zhao, Wei ;
Bu, Yunfei .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 158 :258-268
[7]   Room-Temperature CO Oxidative Coupling for Oxamide Production over Interfacial Au/ZnO Catalysts [J].
Cao, Yanwei ;
Peng, Yao ;
Cheng, Danyang ;
Chen, Lin ;
Wang, Maolin ;
Shang, Cheng ;
Zheng, Lirong ;
Ma, Ding ;
Liu, Zhi-Pan ;
He, Lin .
ACS CATALYSIS, 2023, 13 (01) :735-743
[8]   An Efficient Strategy to Drive Nanoparticles into Carbon Nanotubes and the Remarkable Effect of Confinement on Their Catalytic Performance [J].
Castillejos, Eva ;
Debouttiere, Pierre-Jean ;
Roiban, Lucian ;
Solhy, Abderrahim ;
Martinez, Victor ;
Kihn, Yolande ;
Ersen, Ovidiu ;
Philippot, Karine ;
Chaudret, Bruno ;
Serp, Philippe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (14) :2529-2533
[9]   Alloying Pt Sub-nano-clusters with Boron: Sintering Preventative and Coke Antagonist? [J].
Dadras, Jonny ;
Jimenez-Izal, Elisa ;
Alexandrova, Anastassia N. .
ACS CATALYSIS, 2015, 5 (10) :5719-5727
[10]   A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature [J].
Deng, Dehui ;
Chen, Xiaoqi ;
Yu, Liang ;
Wu, Xing ;
Liu, Qingfei ;
Liu, Yun ;
Yang, Huaixin ;
Tian, Huanfang ;
Hu, Yongfeng ;
Du, Peipei ;
Si, Rui ;
Wang, Junhu ;
Cui, Xiaoju ;
Li, Haobo ;
Xiao, Jianping ;
Xu, Tao ;
Deng, Jiao ;
Yang, Fan ;
Duchesne, Paul N. ;
Zhang, Peng ;
Zhou, Jigang ;
Sun, Litao ;
Li, Jianqi ;
Pan, Xiulian ;
Bao, Xinhe .
SCIENCE ADVANCES, 2015, 1 (11)