Asymptotics of the Exterior Conformal Modulus of a Symmetric Quadrilateral under Stretching Map

被引:1
作者
Dyutin, A. [1 ]
Nguyen, Giang V. [1 ]
机构
[1] Kazan Fed Univ, Kazan 420008, Russia
关键词
quadrilateral; conformal modulus; exterior conformal modulus; quasiconformal mapping; convergence of domains to a kernel; DOUBLY CONNECTED DOMAIN;
D O I
10.1134/S1995080223040078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we study the distortion of the exterior conformal modulus of a symmetric quadrilateral, when stretched in the direction of the abscissa axis with the coefficient H ->infinity. By using some facts from the theory of elliptic integrals, we confirm that the asymptotic behavior of this modulus does not depend on the shape of the boundary of the quadrilateral; moreover, it is equivalent to (1/pi) logH as H ->infinity.
引用
收藏
页码:1289 / 1298
页数:10
相关论文
共 18 条
[1]  
Ahlfors L.V., 2006, Lectures on quasiconformal mappings, V38
[2]  
Anderson GD., 1997, Conformal invariants, inequalities, and quasiconformal maps
[3]  
Bickley WG, 1934, P LOND MATH SOC, V37, P82
[4]  
Byrd P. F., 1971, Handbook of Elliptic Integrals for Engineers and Sciensists
[5]   Asymptotics of Conformal Module of Nonsymmetric Doubly Connected Domain under Unbounded Stretching Along the Real Axis [J].
Dautova, D. ;
Nasyrov, S. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2019, 40 (09) :1268-1274
[6]   Asymptotics of the Modules of Mirror Symmetric Doubly Connected Domains under Stretching [J].
Dautova, D. N. ;
Nasyrov, S. R. .
MATHEMATICAL NOTES, 2018, 103 (3-4) :537-549
[7]  
Dubinin V., 2014, Condenser capacities and symmetrization in geometric function theory, DOI [10.1007/978-3-0348-0843-9, DOI 10.1007/978-3-0348-0843-9]
[8]   ROBIN CAPACITY AND EXTREMAL LENGTH [J].
DUREN, P ;
PFALTZGRAFF, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (01) :110-119
[9]  
Goluzin G.M., 1969, Geometric Theory of Functions of a Complex Variable, V26
[10]  
Hakula H, 2013, ELECTRON T NUMER ANA, V40, P436