Evaluation of the antibacterial activity of dental adhesive containing biogenic silver nanoparticles decorated nanographene oxide nanocomposites (Ag@nGO NCs) and effect on bond strength to dentine

被引:11
|
作者
Arslan, Soley [1 ]
Ekrikaya, Semiha [2 ]
Ildiz, Nilay [3 ]
Yusufbeyoglu, Sadi [4 ]
Ocsoy, Ismail [5 ]
机构
[1] Erciyes Univ, Fac Dent, Dept Restorat Dent, Kayseri, Turkiye
[2] Nuh Naci Yazgan Univ, Fac Dent, Dept Restorat Dent, Kayseri, Turkiye
[3] Erciyes Univ, Fac Pharm, Dept Pharmaceut Microbiol, Kayseri, Turkiye
[4] Univ Hlth Sci, Fac Gulhane Pharm, Dept Pharmaceut Bot, Ankara, Turkiye
[5] Erciyes Univ, Fac Pharm, Dept Analyt Chem, Kayseri, Turkiye
关键词
Antibacterial activity; Biogenic Ag NPs; Biogenic Ag@nGO NCs; Bond strength; Dental adhesive; GRAPHENE OXIDE; QUATERNARY AMMONIUM; ANTIMICROBIAL ACTIVITY; MICROCOSM BIOFILM; NANO-SILVER; EXTRACT; PRIMER; ANTIOXIDANT; INHIBITION; MANAGEMENT;
D O I
10.1007/s10266-023-00836-7
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Our study aimed to evaluate the antibacterial activities and dentin bond strengths of silver nanoparticles (Ag NPs) and silver nano-graphene oxide nanocomposites (Ag@nGO NCs) produced by green and chemical synthesis methods added to the dental adhesive. Ag NPs were produced by green synthesis (biogenic) (B-Ag NPs) and chemical synthesis methods (C-Ag NPs) and deposited on nGO (nano-graphene oxide). Ag NPs and Ag@nGO NCs (0.05% w/w) were added to the primer and bond (Clearfil SE Bond). Group 1: control, Group 2: nGO, Group 3: B-Ag NPs, Group 4: B-Ag@nGO NCs, Group 5: C-Ag NPs, Group 6: C-Ag@nGO NCs. Streptococcus mutans (S. mutans) live/dead assay analysis, MTT metabolic activity test, agar disc diffusion test, lactic acid production, and colony forming units (CFUs) tests were performed. Bond strength values were determined by the microtensile bond strength test (& mu;TBS). Failure types were determined by evaluating with SEM. Statistical analysis was performed using one-way ANOVA and two-way ANOVA (p < 0.05). There was a difference between the groups in the viable bacteria ratio and lactic acid production tests (p < 0.05). When the inhibition zone and S. mutans CFUs were evaluated, there was no difference between Group 3 and Group 4 (p > 0.05), but there was a difference between the other groups (p < 0.05). When the metabolic activity of S. mutans was evaluated, there was a difference between Group 1 and other groups, and between Group 2 and Group 5, and Group 6 (p < 0.05). There was no difference between the groups in the & mu;TBS values (p > 0.05). As a result, although the antibacterial activity of B-Ag NPs and B-Ag@nGO Ag NPs obtained by green synthesis is lower than that of chemically synthesis obtained C-Ag NPs and C-Ag@nGO NCs, they provided higher antibacterial activity compared to the control group and did not reduce & mu;TBS. The addition of biogenic Ag NPs to the adhesive system increased the antibacterial effect by maintaining the bond strength of the adhesive. Antibacterial adhesives can increase the restoration life by protecting the tooth-adhesive interface.
引用
收藏
页码:341 / 354
页数:14
相关论文
共 4 条
  • [1] Evaluation of the antibacterial activity of dental adhesive containing biogenic silver nanoparticles decorated nanographene oxide nanocomposites (Ag@nGO NCs) and effect on bond strength to dentine
    Soley Arslan
    Semiha Ekrikaya
    Nilay Ildiz
    Sadi Yusufbeyoglu
    İsmail Ocsoy
    Odontology, 2024, 112 : 341 - 354
  • [2] Antibacterial effect, cytotoxicity, and bond strength of a modified dental adhesive containing silver nanoparticles
    Aguiar, Juliana Dias
    Pedrosa, Marlus da Silva
    Toma, Sergio Hiroshi
    Araki, Koiti
    Marques, Marcia Martins
    Medeiros, Igor Studart
    ODONTOLOGY, 2023, 111 (02) : 420 - 427
  • [3] Antibacterial effect, cytotoxicity, and bond strength of a modified dental adhesive containing silver nanoparticles
    Juliana Dias Aguiar
    Marlus da Silva Pedrosa
    Sergio Hiroshi Toma
    Koiti Araki
    Marcia Martins Marques
    Igor Studart Medeiros
    Odontology, 2023, 111 : 420 - 427
  • [4] Evaluation of the Shear Bond Strength and Antibacterial Activity of Orthodontic Adhesive Containing Silver Nanoparticle, an In-Vitro Study
    Eslamian, Ladan
    Borzabadi-Farahani, Ali
    Karimi, Shahedeh
    Saadat, Sepideh
    Badiee, Mohammad Reza
    NANOMATERIALS, 2020, 10 (08) : 1 - 8