Logan's problem for Jacobi transforms

被引:0
作者
Gorbachev, Dmitry [1 ]
Ivanov, Valerii [1 ]
Tikhonov, Sergey [2 ,3 ,4 ]
机构
[1] Tula State Univ, Dept Appl Math & Comp Sci, Tula 300012, Russia
[2] Ctr Recerca Matemat, Campus Bellaterra,Edif C, Barcelona 08193, Spain
[3] ICREA, Pg Lluis Companys 23, Barcelona 08010, Spain
[4] Univ Autonoma Barcelona, Barcelona, Spain
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2024年 / 76卷 / 03期
关键词
Logan's problem; positive definite functions; bandlimited functions; Jacobi transform on the half-line; Fourier transform on the hyperboloid; DEFINITE BANDLIMITED FUNCTIONS; EXTREMAL PROBLEMS; ZEROS;
D O I
10.4153/S0008414X23000275
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider direct and inverse Jacobi transforms with measures d mu(t) = 2(2 rho)(sinh t)(2 alpha+1)(cosh t)(2 beta+1) dt and d sigma(lambda) = (2 pi)(-1) vertical bar 2 rho-i lambda Gamma(alpha+1)Gamma(i lambda)\Gamma()rho+i lambda)/2 Gamma((rho+i lambda)/2-beta vertical bar(-2) d lambda, respectively. We solve the following generalized Logan problem: to find the infimum inf Lambda((-1)(m-1) f), m is an element of N, where Delta(f) = sup {lambda > 0: f (lambda) > 0} and the infimum is taken over all nontrivial even entire functions f of exponential type that are Jacobi transforms of positive measures with supports on an interval. Here, if m >= 2, then we additionally assume that integral(infinity)(0) lambda(2k) f (lambda) d sigma(lambda) = 0 for k = 0,center dot center dot center dot, m - 2. We prove that admissible functions for this problem are positive-definite with respect to the inverse Jacobi transform. The solution of Logan's problem was known only when alpha = beta = -1/2. We find a unique (up to multiplication by a positive constant) extremizer f(m). The corresponding Logan problem for the Fourier transform on the hyperboloid H-d is also solved. Using the properties of the extremizer f(m) allows us to give an upper estimate of the length of a minimal interval containing not less than n zeros of positive definite functions. Finally, we show that the Jacobi functions form the Chebyshev systems.
引用
收藏
页码:915 / 945
页数:31
相关论文
共 26 条
[1]  
Achieser N. N., 2004, THEORY APPROXIMATION
[2]   Sturm's theorem on zeros of linear combinations of eigenfunctions [J].
Berard, Pierre ;
Helffer, Bernard .
EXPOSITIONES MATHEMATICAE, 2020, 38 (01) :27-50
[3]   Two related extremal problems for entire functions of several variables [J].
Berdysheva, EE .
MATHEMATICAL NOTES, 1999, 66 (3-4) :271-282
[4]   Fourier optimization and prime gaps [J].
Carneiro, Emanuel ;
Milinovich, Micah B. ;
Soundararajan, Kannan .
COMMENTARII MATHEMATICI HELVETICI, 2019, 94 (03) :533-568
[5]   An optimal uncertainty principle in twelve dimensions via modular forms [J].
Cohn, Henry ;
Goncalves, Felipe .
INVENTIONES MATHEMATICAE, 2019, 217 (03) :799-831
[6]   THE GAUSSIAN CORE MODEL IN HIGH DIMENSIONS [J].
Cohn, Henry ;
De Courcy-Ireland, Matthew .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (13) :2417-2455
[7]   SPHERE PACKING BOUNDS VIA SPHERICAL CODES [J].
Cohn, Henry ;
Zhao, Yufei .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (10) :1965-2002
[8]  
Edwards R. E., 1979, FOURIER SERIES MODER, V1
[9]   CONVOLUTION STRUCTURE FOR JACOBI FUNCTION EXPANSIONS [J].
FLENSTEDJENSEN, M ;
KOORNWINDER, T .
ARKIV FOR MATEMATIK, 1973, 11 (02) :245-262
[10]   JACOBI FUNCTIONS - ADDITION FORMULA AND THE POSITIVITY OF THE DUAL CONVOLUTION STRUCTURE [J].
FLENSTEDJENSEN, M ;
KOORNWINDER, TH .
ARKIV FOR MATEMATIK, 1979, 17 (01) :139-151