Polya's conjecture for Euclidean balls

被引:11
作者
Filonov, Nikolay [1 ,2 ]
Levitin, Michael [3 ]
Polterovich, Iosif [4 ]
Sher, David A. [5 ]
机构
[1] RAS, Steklov Inst Math, St Petersburg Dept, Fontanka 27, St Petersburg 191023, Russia
[2] St Petersburg State Univ, Univ emb 7 9, St Petersburg 199034, Russia
[3] Univ Reading, Dept Math & Stat, Pepper Lane Whiteknights, Reading RG6 6AX, England
[4] Univ Montreal, Dept Math & Stat, CP 6128 succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[5] DePaul Univ, Dept Math Sci, 2320 N Kenmore Ave, Chicago, IL 60614 USA
基金
加拿大自然科学与工程研究理事会; 俄罗斯科学基金会; 英国工程与自然科学研究理事会;
关键词
35P15; 35P20; 33C10; 11P21; NEUMANN EIGENVALUE; MAXIMIZATION; DIRICHLET; DOMAINS; BOUNDS;
D O I
10.1007/s00222-023-01198-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The celebrated Polya's conjecture (1954) in spectral geometry states that the eigenvalue counting functions of the Dirichlet and Neumann Laplacian on a bounded Euclidean domain can be estimated from above and below, respectively, by the leading term of Weyl's asymptotics. Polya's conjecture is known to be true for domains which tile Euclidean space, and, in addition, for some special domains in higher dimensions. In this paper, we prove Polya's conjecture for the disk, making it the first non-tiling planar domain for which the conjecture is verified. We also confirm Polya's conjecture for arbitrary planar sectors, and, in the Dirichlet case, for balls of any dimension. Along the way, we develop the known links between the spectral problems in the disk and certain lattice counting problems. A key novel ingredient is the observation, made in recent work of the last named author, that the corresponding eigenvalue and lattice counting functions are related not only asymptotically, but in fact satisfy certain uniform bounds. Our proofs are purely analytic, except for a rigorous computer-assisted argument needed to cover the short interval of values of the spectral parameter in the case of the Neumann problem in the disk.
引用
收藏
页码:129 / 169
页数:41
相关论文
共 42 条
[1]  
[Anonymous], 2005, ALGEBRA ANALIZ, DOI [DOI 10.1090/S1061-0022-05-00857-5, 10 . 1090 / S1061-0022-05-00857-5]
[2]   Maximization of the second non-trivial Neumann eigenvalue [J].
Bucur, Dorin ;
Henrot, Antoine .
ACTA MATHEMATICA, 2019, 222 (02) :337-361
[3]  
Colin de Verdiere Y., 2010, SEMINAIRE THEORIE SP, V29, P1, DOI 10.5802/tsg.283
[4]  
DLMF, NIST DIGITAL LIB MAT, DOI DOI 10.1103/PhysRevLett.113.010501
[5]  
Dorrie H., 1965, 100 GREAT PROBLEMS E
[6]  
Forisek M, 2007, LECT NOTES COMPUT SC, V4475, P156
[7]  
Frank RL, 2009, J EUR MATH SOC, V11, P1365
[8]  
Freitas, ARXIV
[9]   Optimal unions of scaled copies of domains and Polya's conjecture [J].
Freitas, Pedro ;
Lagace, Jean ;
Payette, Jordan .
ARKIV FOR MATEMATIK, 2021, 59 (01) :11-51
[10]   A remark on Polya's conjecture at low frequencies [J].
Freitas, Pedro .
ARCHIV DER MATHEMATIK, 2019, 112 (03) :305-311