On a Low-Rank Matrix Single-Index Model

被引:1
作者
Mai, The Tien [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7034 Trondheim, Norway
关键词
low-rank matrix; single-index model; PAC-Bayes bounds; optimal rate; oracle inequality; VARIABLE SELECTION;
D O I
10.3390/math11092065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we conduct a theoretical examination of a low-rank matrix single-index model. This model has recently been introduced in the field of biostatistics, but its theoretical properties for jointly estimating the link function and the coefficient matrix have not yet been fully explored. In this paper, we make use of the PAC-Bayesian bounds technique to provide a thorough theoretical understanding of the joint estimation of the link function and the coefficient matrix. This allows us to gain a deeper insight into the properties of this model and its potential applications in different fields.
引用
收藏
页数:16
相关论文
共 20 条
  • [1] Alquier P, 2013, J MACH LEARN RES, V14, P243
  • [2] Boucheron S., 2013, CONCENTRATION INEQUA, DOI DOI 10.1093/ACPROF:OSO/9780199535255.001.0001
  • [3] Catoni O., 2007, LECT NOTES MONOGRAPH, V4465
  • [4] Understanding Implicit Regularization in Over-Parameterized Single Index Model
    Fan, Jianqing
    Yang, Zhuoran
    Yu, Mengxin
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2315 - 2328
  • [5] Ganti R, 2015, ADV NEUR IN, V28
  • [6] Any orthonormal basis in high dimension is uniformly distributed over the sphere
    Goldstein, Sheldon
    Lebowitz, Joel L.
    Tumulka, Roderich
    Zanghi, Nino
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (02): : 701 - 717
  • [7] OPTIMAL SMOOTHING IN SINGLE-INDEX MODELS
    HARDLE, W
    HALL, P
    ICHIMURA, H
    [J]. ANNALS OF STATISTICS, 1993, 21 (01) : 157 - 178
  • [8] SEMIPARAMETRIC LEAST-SQUARES (SLS) AND WEIGHTED SLS ESTIMATION OF SINGLE-INDEX MODELS
    ICHIMURA, H
    [J]. JOURNAL OF ECONOMETRICS, 1993, 58 (1-2) : 71 - 120
  • [9] VARIABLE SELECTION FOR GENERAL INDEX MODELS VIA SLICED INVERSE REGRESSION
    Jiang, Bo
    Liu, Jun S.
    [J]. ANNALS OF STATISTICS, 2014, 42 (05) : 1751 - 1786
  • [10] NUCLEAR-NORM PENALIZATION AND OPTIMAL RATES FOR NOISY LOW-RANK MATRIX COMPLETION
    Koltchinskii, Vladimir
    Lounici, Karim
    Tsybakov, Alexandre B.
    [J]. ANNALS OF STATISTICS, 2011, 39 (05) : 2302 - 2329