Self-healable, stretchable triboelectric nanogenerators based on flexible polyimide for energy harvesting and self-powered sensors

被引:45
|
作者
Li, Changyang [1 ,2 ,3 ,4 ]
Wang, Peng [1 ,3 ,4 ]
Zhang, Dun [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China
[4] Pilot Natl Lab Marine Sci & Technol Qingdao, Open Studio Marine Corros & Protect, 168 Wenhai Middle Rd, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Self-healing; Polyimide; Energy harvesting; TOUGH;
D O I
10.1016/j.nanoen.2023.108285
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Self-healing triboelectric nanogenerators (TENGs) are new, stable and durable energy harvesters. Polyimide (PI) is a promising negatively charged material that has been widely developed as a negative friction material for TENGs, but self-healing PI-based TENGs are currently vacant. Here, we reported a self-healing TENG device fabricated by self-healing PI for energy harvesting and motion sensing. The designed and fabricated PI-based TENGs exhibited excellent intrinsic self-healing and shape tailorability properties. The self-healing properties are derived from the dynamic disulfide bond exchange and flexible PDMS fragments in the PI backbone, which can recover its damage and output performance at 100 degrees C for 3 h. The output performance of the fabricated 6FDA-4PDA-PDMS-PI-based TENG was double that of the normal PI-based TENG due to CF3 electron-absorbing groups and siloxane fragments in the PI backbone. Finally, the applications of self-healing PI-based TENGs to harvest energy to drive commercial electronic devices and joint motion sensing were demonstrated. This work provides theoretical guidance for the fabrication of self-healing TENGs with reliable output performance and practical applications, contributing to the future of sustainable energy and wearable electronics.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Superhydrophobic, Humidity-Resistant, and Flexible Triboelectric Nanogenerators for Biomechanical Energy Harvesting and Wearable Self-Powered Sensing
    Qu, Mengnan
    Shen, Lei
    Wang, Jiaxin
    Zhang, Nana
    Pang, Yajie
    Wu, Yaxin
    Ge, Jianwei
    Peng, Lei
    Yang, Jie
    He, Jinmei
    ACS APPLIED NANO MATERIALS, 2022, 5 (07) : 9840 - 9851
  • [22] Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Chen, Lijun
    Wang, Tairan
    Shen, Yunchu
    Wang, Fumei
    Chen, Chaoyu
    NANOMATERIALS, 2023, 13 (05)
  • [23] All-in-one self-powered flexible microsystems based on triboelectric nanogenerators
    Zhang, Xiao-Sheng
    Han, Mengdi
    Kim, Beomjoon
    Bao, Jing-Fu
    Brugger, Juergen
    Zhang, Haixia
    NANO ENERGY, 2018, 47 : 410 - 426
  • [24] Nanogenerators-Based Self-Powered Sensors
    Mondal, Rajib
    Hasan, Md Al Mahadi
    Zhang, Renyun
    Olin, Hakan
    Yang, Ya
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (12):
  • [25] Self-Healable Triboelectric Nanogenerators: Marriage between Self-Healing Polymer Chemistry and Triboelectric Devices
    Li, Changyang
    Guo, Hengyu
    Wu, Zhiyi
    Wang, Peng
    Zhang, Dun
    Sun, Yihan
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (02)
  • [26] Stretchable and self-healable catechol-chitosan-diatom hydrogel for triboelectric generator and self-powered tremor sensor targeting at Parkinson disease
    Kim, Jong-Nam
    Lee, Jeehee
    Lee, Haeshin
    Oh, Il-Kwon
    NANO ENERGY, 2021, 82
  • [27] Self-Powered Sensors and Systems Based on Nanogenerators
    Wu, Zhiyi
    Cheng, Tinghai
    Wang, Zhong Lin
    SENSORS, 2020, 20 (10)
  • [28] Flexible Triboelectric Nanogenerators based on Hydrogel/g-C3N4 Composites for Biomechanical Energy Harvesting and Self-Powered Sensing
    Xiao, Yana
    Li, Zihua
    Xu, Bingang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (11) : 13674 - 13684
  • [29] Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics
    Wang, Xiaofeng
    Yin, Yajiang
    Yi, Fang
    Dai, Keren
    Niu, Simiao
    Han, Yingzhou
    Zhang, Yue
    You, Zheng
    NANO ENERGY, 2017, 39 : 429 - 436
  • [30] The Progress of PVDF as a Functional Material for Triboelectric Nanogenerators and Self-Powered Sensors
    Lee, Jin Pyo
    Lee, Jae Won
    Baik, Jeong Min
    MICROMACHINES, 2018, 9 (10):