Nanoindentation characteristics of nanocrystalline tungsten via atomistic simulation

被引:8
作者
Hu, Yiqun [1 ]
Xu, Jianfei [1 ]
Su, Lei [1 ]
Liu, Xiuming [1 ]
Zhang, Yuhang [1 ]
Ding, Suhang [1 ]
Wang, Rong [2 ]
Xia, Re [1 ,3 ]
机构
[1] Wuhan Univ, Key Lab Hydraul Machinery Transients, Minist Educ, Wuhan, Peoples R China
[2] Acad Mil Sci, Def Innovat Inst, Beijing, Peoples R China
[3] Wuhan Univ, Key Lab Hydraul Machinery Transients, Minist Educ, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
material science; computational material; Nanoindentation; tungsten; molecular dynamics; mechanical properties; MECHANICAL-PROPERTIES; SINGLE-CRYSTAL; ENTROPY ALLOY; SIZE; TRANSITION; VELOCITY; BEHAVIOR; SCALE; FILM;
D O I
10.1080/14786435.2023.2173328
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular dynamics simulations are performed to explore nanoindentation characteristics of tungsten, and the influences of grain size, indenter velocity, indenter size, and temperature are discussed. The results illustrate that the hardness reduces as the grain size (5.00 similar to 24.62 nm) decreases. There is no phase change observed during the whole deformation process. For monocrystalline W, the dislocation nucleation and propagation dominate the deformation mechanisms. Differently, the primary deformation mode of nanocrystalline W is the grain split and motion of GBs. Dislocations primarily nucleate below the contact surface of the indenter and substrate and then glide in the grain core. The monocrystalline W has better pattern-forming ability than nanocrystalline. Besides, the pattern-forming ability of nanocrystalline W is negatively correlated with the average grain size (5.00 similar to 24.62 nm). The von Mises stress is mainly concentrated in the interface between the indenter and substrate, the dislocation area for monocrystalline, and grain boundaries for nanocrystalline. The indentation force and hardness are positively correlated with indenter radius size (30 similar to 80 angstrom), negatively correlated with temperature (10 similar to 1500 K), and insensitive to the indenter velocity when velocity is lower than 3.0 angstrom /ps (300 m/s).
引用
收藏
页码:749 / 767
页数:19
相关论文
共 61 条
[1]   Atomistic Insights on the Wear/Friction Behavior of Nanocrystalline Ferrite During Nanoscratching as Revealed by Molecular Dynamics [J].
AlMotasem, A. T. ;
Bergstrom, J. ;
Gaard, A. ;
Krakhmalev, P. ;
Holleboom, L. J. .
TRIBOLOGY LETTERS, 2017, 65 (03)
[2]   The effect of crystal anisotropy and pre-existing defects on the incipient plasticity of FCC single crystals during nanoindentation [J].
Bagheripoor, Mandi ;
Klassen, Robert .
MECHANICS OF MATERIALS, 2020, 143
[3]   APPLICATION OF THE EMBEDDED ATOM METHOD TO THE FRACTURE OF INTERFACES [J].
BASKES, MI ;
FOILES, SM ;
DAW, MS .
JOURNAL DE PHYSIQUE, 1988, 49 (C-5) :483-495
[4]   Ultrathin broadband metasurface-based absorber comprised of tungsten nanowires [J].
Bilal, R. M. H. ;
Baqir, M. A. ;
Choudhury, P. K. ;
Naveed, M. A. ;
Ali, M. M. ;
Rahim, A. A. .
RESULTS IN PHYSICS, 2020, 19
[5]   Fracture toughness characterization of single-crystalline tungsten using notched micro-cantilever specimens [J].
Bohnert, C. ;
Schmitt, N. J. ;
Weygand, S. M. ;
Kraft, O. ;
Schwaiger, R. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2016, 81 :1-17
[6]   Irradiation effect on mechanical properties of tungsten from molecular dynamic simulation [J].
Chen, L. ;
Li, L. Q. ;
Gong, H. R. ;
Fan, J. L. ;
Li, Wei .
MATERIALS LETTERS, 2019, 241 :27-30
[7]   Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation [J].
Chen, L. ;
Fan, J. L. ;
Gong, H. R. .
JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (03)
[8]   Hall-Petch and inverse Hall-Petch relations in high-entropy CoNiFeAlxCu1-x alloys [J].
Chen, Shuai ;
Aitken, Zachary H. ;
Wu, Zhaoxuan ;
Yu, Zhigen ;
Banerjee, Rajarshi ;
Zhang, Yong-Wei .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773
[9]   Adiabatic shear localization of tungsten based heterogeneous multilayer structures [J].
Chen, X. X. ;
Ligda, J. P. ;
Schuster, B. E. ;
Kecskes, L. J. ;
Wei, Q. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 801
[10]   Atomistic study on the anomalous temperature-dependent dynamic tensile strength of ice under shock loading [J].
Chen, Y. Y. ;
Xiao, K. L. ;
Yue, J. Z. ;
Yin, Q. Y. ;
Wu, X. Q. ;
Huang, C. G. .
PHILOSOPHICAL MAGAZINE, 2021, 101 (11) :1289-1304