The Classification of Common Macular Diseases Using Deep Learning on Optical Coherence Tomography Images with and without Prior Automated Segmentation

被引:8
作者
Kaothanthong, Natsuda [1 ]
Limwattanayingyong, Jirawut [2 ]
Silpa-archa, Sukhum [2 ]
Tadarati, Mongkol [2 ]
Amphornphruet, Atchara [2 ]
Singhanetr, Panisa [3 ]
Lalitwongsa, Pawas [2 ]
Chantangphol, Pantid [1 ]
Amornpetchsathaporn, Anyarak [2 ]
Chainakul, Methaphon [2 ]
Ruamviboonsuk, Paisan [2 ]
机构
[1] Thammasat Univ, Sirindhorn Int Inst Technol, Bangkok 12000, Pathumthani, Thailand
[2] Rajavithi Hosp, Dept Ophthalmol, Bangkok 10400, Thailand
[3] Mettapracharak Hosp, Dept Ophthalmol, Nakhon Pathom 73210, Thailand
基金
英国科研创新办公室;
关键词
OCT; macular disease; image classification; RETINAL LAYERS;
D O I
10.3390/diagnostics13020189
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We compared the performance of deep learning (DL) in the classification of optical coherence tomography (OCT) images of macular diseases between automated classification alone and in combination with automated segmentation. OCT images were collected from patients with neovascular age-related macular degeneration, polypoidal choroidal vasculopathy, diabetic macular edema, retinal vein occlusion, cystoid macular edema in Irvine-Gass syndrome, and other macular diseases, along with the normal fellow eyes. A total of 14,327 OCT images were used to train DL models. Three experiments were conducted: classification alone (CA), use of automated segmentation of the OCT images by RelayNet, and the graph-cut technique before the classification (combination method 1 (CM1) and 2 (CM2), respectively). For validation of classification of the macular diseases, the sensitivity, specificity, and accuracy of CA were found at 62.55%, 95.16%, and 93.14%, respectively, whereas the sensitivity, specificity, and accuracy of CM1 were found at 72.90%, 96.20%, and 93.92%, respectively, and of CM2 at 71.36%, 96.42%, and 94.80%, respectively. The accuracy of CM2 was statistically higher than that of CA (p = 0.05878). All three methods achieved AUC at 97%. Applying DL for segmentation of OCT images prior to classification of the images by another DL model may improve the performance of the classification.
引用
收藏
页数:10
相关论文
共 26 条
[1]   AOCT-NET: a convolutional network automated classification of multiclass retinal diseases using spectral-domain optical coherence tomography images [J].
Alqudah, Ali Mohammad .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (01) :41-53
[2]   DISEASE CLASSIFICATION OF MACULAR OPTICAL COHERENCE TOMOGRAPHY SCANS USING DEEP LEARNING SOFTWARE Validation on Independent, Multicenter Data [J].
Bhatia, Kanwal K. ;
Graham, Mark S. ;
Terry, Louise ;
Wood, Ashley ;
Tranos, Paris ;
Trikha, Sameer ;
Jaccard, Nicolas .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2020, 40 (08) :1549-1557
[3]   Polypoidal Choroidal Vasculopathy Consensus Nomenclature and Non-Indocyanine Green Angiograph Diagnostic Criteria from the Asia-Pacific Ocular Imaging Society PCV Workgroup [J].
Cheung, Chui M. ;
Lai, Timothy Y. Y. ;
Teo, Kelvin ;
Ruamviboonsuk, Paisan ;
Chen, Shih-Jen ;
Kim, Judy E. ;
Gomi, Fumi ;
Koh, Adrian H. ;
Kokame, Gregg ;
Jordan-Yu, Janice Marie ;
Corvi, Federico ;
Invernizzi, Alessandro ;
Ogura, Yuichiro ;
Tan, Colin ;
Mitchell, Paul ;
Gupta, Vishali ;
Chhablani, Jay ;
Chakravarthy, Usha ;
Sadda, Srinivas R. ;
Wong, Tien Y. ;
Staurenghi, Giovanni ;
Lee, Won Ki .
OPHTHALMOLOGY, 2021, 128 (03) :443-452
[4]   Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation [J].
Chiu, Stephanie J. ;
Li, Xiao T. ;
Nicholas, Peter ;
Toth, Cynthia A. ;
Izatt, Joseph A. ;
Farsiu, Sina .
OPTICS EXPRESS, 2010, 18 (18) :19413-19428
[5]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[6]  
Delong A, 2008, PROC CVPR IEEE, P946
[7]   Graph cut segmentation with a statistical shape model in cardiac MRI [J].
Grosgeorge, D. ;
Petitjean, C. ;
Dacher, J. -N. ;
Ruan, S. .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (09) :1027-1035
[8]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[9]   Identity Mappings in Deep Residual Networks [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :630-645
[10]   Fastai: A Layered API for Deep Learning [J].
Howard, Jeremy ;
Gugger, Sylvain .
INFORMATION, 2020, 11 (02)