Conductive, self-healing, and antibacterial Ag/MXene-PVA hydrogel as wearable skin-like sensors

被引:19
|
作者
Li, Lumin [1 ]
Ji, Xiaofeng [2 ]
Chen, Kai [1 ]
机构
[1] Sanming Univ, Sch Resources & Chem Engn, Sanming, Fujian, Peoples R China
[2] Fujian Med Univ, Affiliated Sanming Hosp 1, Sanming, Fujian, Peoples R China
关键词
Hydrogel; MXene nanosheets; self-healing; antibacterial; skin-like sensor; STRAIN;
D O I
10.1177/08853282221131137
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The rapid development of flexible electronic technology has led to the in-depth study of flexible wearable sensors to achieve accurate sensing under different external stimuli. However, it is still a huge challenge to develop hydrogel-based wearable skin-like sensors with super ductility, high sensitivity, and self-healing properties. Herein, the Ti3C2 type of MXene was synthesized, and the Ag/MXene nanocomplexes were incorporated into polyvinyl alcohol-borax matrix to construct a novel composite hydrogel as the multifunctional nanofillers, which could bring both improved properties and novel functionalities. The Ag/MXene-Poly (vinyl alcohol) (PVA) hydrogel displayed integrated merits of highly strain sensitive (GF = 3.26), self-healing (within 10 min, 91% healing efficiency), and excellent antibacterial activity. The hydrogel could be assembled into a wearable skin-like sensor to monitor human movement, including large deformations (finger, elbow, wrist, and knee bending) and tiny deformations (mouth's movement and throat vocalization) in real time. Therefore, this work shed a new light on the development of flexible wearable skin-like sensors for the personalized healthcare monitoring, human-machine interfaces, and artificial intelligence.
引用
收藏
页码:1169 / 1181
页数:13
相关论文
共 50 条
  • [1] Skin-like Heterogeneous and Self-Healing Conductive Hydrogel toward Ultrasensitive Marine Sensing
    Liu, Yanan
    Lin, Jiehan
    Wei, Junjie
    Chen, Tao
    Wang, Wenqin
    ACS SENSORS, 2025,
  • [2] A Skin-like Self-healing and stretchable substrate for wearable electronics
    Yeasmin, Rubaya
    Han, Seung-Ik
    Duy, Le Thai
    Ahn, Byungmin
    Seo, Hyungtak
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [3] Self-healing, antibacterial, and conductive double network hydrogel for strain sensors
    Liu, Chenglu
    Xu, Zhengyan
    Chandrasekaran, Sundaram
    Liu, Yongping
    Wu, Mengyang
    CARBOHYDRATE POLYMERS, 2023, 303
  • [4] Self-healing PVA/Chitosan/MXene triple network hydrogel for strain and temperature sensors
    Xu, Bingbing
    Zhang, Yue
    Li, Jia
    Wang, Boxiang
    Li, Ruoxin
    Cheng, Dehong
    Chang, Guangtao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 290
  • [5] Chitosan-based transparent and conductive hydrogel with highly stretchable, adhesive and self-healing as skin-like sensor
    Li, Xinjian
    Li, Xiaomeng
    Yan, Manqing
    Wang, Qiyang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 242
  • [6] Conductive Self-Healing Nanocomposite Hydrogel Skin Sensors with Antifreezing and Thermoresponsive Properties
    Wei, Peiling
    Chen, Tao
    Chen, Guoyin
    Liu, Hongmei
    Mugaanire, Innocent Tendo
    Hou, Kai
    Zhu, Meifang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (02) : 3068 - 3079
  • [7] Mussel-Inspired Conductive Hydrogel with Self-Healing, Adhesive, and Antibacterial Properties for Wearable Monitoring
    Zhang, Xiaohui
    Wei, Jingjing
    Lu, Shengchang
    Xiao, He
    Miao, Qingxian
    Zhang, Min
    Liu, Kai
    Chen, Lihui
    Huang, Liulian
    Wu, Hui
    ACS APPLIED POLYMER MATERIALS, 2021, 3 (11) : 5798 - 5807
  • [8] Ultra-stretchable, adhesive, and self-healing MXene/polyampholytes hydrogel as flexible and wearable epidermal sensors
    Chen, Kai
    Hu, Yunping
    Wang, Feng
    Liu, Mingxiang
    Liu, Pei
    Li, Cong
    Yu, Yongsheng
    Xiao, Xiufeng
    Feng, Qian
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 645
  • [9] Tough, Self-Healing, Strain-Sensitive MXene/Ni Hydrogel for Electromagnetic Shielding and Wearable Sensors
    Yuan, Ying
    You, Qiao
    Qiu, Shunjian
    Wang, Zhiming
    Chen, Yunhua
    Wang, Chaoyang
    Zhou, Li
    Liu, Hongxia
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (18): : 11406 - 11419
  • [10] Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications
    Su, Gehong
    Yin, Shuya
    Guo, Youhong
    Zhao, Fei
    Guo, Quanquan
    Zhang, Xinxing
    Zhou, Tao
    Yu, Guihua
    MATERIALS HORIZONS, 2021, 8 (06) : 1795 - 1804