On a Solvable System of Difference Equations in Terms of Generalized Fibonacci Numbers

被引:0
作者
Yuksel, Arzu [1 ]
Yazlik, Yasin [2 ]
机构
[1] Nevsehir Haci Bektas Veli Univ, Inst Sci, Dept Math, Nevsehir, Turkiye
[2] Nevsehir Haci Bektas Veli Univ, Fac Sci & Art, Dept Math, Nevsehir, Turkiye
关键词
System of difference equations; closed-form; generalized Fibonacci numbers; BEHAVIOR; SOLVABILITY;
D O I
10.1515/ms-2023-0056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we represent that the following three-dimensional system of difference equations x(n+1) = alpha y(n) + ay(n)/y(n)- beta z(n-1), y(n)+1 = beta z(n) + bz(n)/ z(n) - gamma x(n-1), zn+1 = gamma x(n) + cx(n)/ x(n)- alpha y(n-1), n epsilon N-0, where the parameters a, b, c, alpha, beta, gamma and the initial values x(-i) y(-i) z(-i), i epsilon {0, 1}, are real numbers, can be solved in closed form by using transformation. We analyzed the solutions in 10 different cases depending on whether the parameters are zero or nonzero. It is noteworthy to depict that the solutions of some particular cases of this system are presented in terms of generalized Fibonacci numbers. Note that our results considerably extend and improve some recent results in the literature.
引用
收藏
页码:761 / 774
页数:14
相关论文
共 42 条