Practical relevance of charge transfer resistance at the Li metal electrode|electrolyte interface in batteries?

被引:12
作者
Stolz, Lukas [1 ]
Winter, Martin [1 ,2 ]
Kasnatscheew, Johannes [1 ]
机构
[1] Univ Munster, Inst Phys Chem, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany
[2] Forschungszentrum Julich, Helmholtz Inst Munster, IEK 12, Corrensst 46, D-48149 Munster, Germany
关键词
Resistance; Charge transfer; Overvoltage; Li metal battery; Liquid electrolyte; Solid polymer electrolyte; Butler-Volmer; Fast charge; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; LITHIUM ION; PHYSICAL INTERPRETATIONS; DENDRITE FORMATION; SEI; OVERPOTENTIALS; PLOTS;
D O I
10.1007/s10008-023-05792-4
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The theoretically possible energy and power densities of rechargeable batteries are practically limited by resistances as these lead to overvoltages, particularly pronounced at kinetically harsher conditions, i.e., high currents and/or low temperature. Charge transfer resistance (R-ct), being a major type of resistance alongside with Ohmic (R-Omega) and mass transport (R-mt), is related with the activation hindrance of electrochemical reactions. Its practical relevance is discussed within this work via analyzing Li vertical bar vertical bar Li cells with the galvanostatic/constant current (CC) technique. R-ct at Li vertical bar electrolyte interfaces is shown to be relevantly impacted by electrode-electrolyte interphases; implying the electrolyte type, as well. While solid polymer electrolytes (SPEs), e.g., based on poly(ethylene) oxide (PEO), show negligible R-ct, it is evident for commercial liquid electrolytes and readily increase during storage. Given the asymptotic overvoltage vs. current behavior of R-ct, obeying Butler-Volmer equation, R-ct gets less relevant at enhanced currents, as experimentally validated, finally pointing to the dominance of R-Omega and (depending on system) R-mt in the overall resistance.
引用
收藏
页数:6
相关论文
共 33 条
[1]  
Bard A.J., 2001, Electrochemical Methods: Fundamentals and Applications, P87
[2]   ELECTROCHEMICAL TRANSFER-COEFFICIENT [J].
BAUER, HH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1968, 16 (03) :419-&
[3]   Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode [J].
Bieker, Georg ;
Winter, Martin ;
Bieker, Peter .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :8670-8679
[4]   Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models [J].
Chen, Chang-Hui ;
Planella, Ferran Brosa ;
O'Regan, Kieran ;
Gastol, Dominika ;
Widanage, W. Dhammika ;
Kendrick, Emma .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (08)
[5]  
Chien Y.-C., 2021, CHEMRXIV
[6]   FORMATION OF A PASSIVATING FILM AT THE LITHIUM-PEO-LICF3SO3 INTERFACE [J].
FAUTEUX, D .
SOLID STATE IONICS, 1985, 17 (02) :133-138
[7]   Fundamentals of battery dynamics [J].
Jossen, A .
JOURNAL OF POWER SOURCES, 2006, 154 (02) :530-538
[8]   A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries [J].
Kasnatscheew, Johannes ;
Placke, Tobias ;
Streipert, Benjamin ;
Rothermel, Sergej ;
Wagner, Ralf ;
Meister, Paul ;
Laskovic, Isidora Cekic ;
Winter, Martin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) :A2479-A2486
[9]   Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode [J].
Kasnatscheew, Johannes ;
Rodehorst, Uta ;
Streipert, Benjamin ;
Wiemers-Meyer, Simon ;
Jakelski, Rene ;
Wagner, Ralf ;
Laskovic, Isidora Cekic ;
Winter, Martin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (14) :A2943-A2950
[10]   Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries [J].
Krauskopf, Thorben ;
Richter, Felix H. ;
Zeier, Wolfgang G. ;
Janek, Juergen .
CHEMICAL REVIEWS, 2020, 120 (15) :7745-7794