SEMI-SUPERVISED OBJECT DETECTION FOR SORGHUM PANICLES IN UAV IMAGERY

被引:1
作者
Cai, Enyu [1 ]
Guo, Jiaqi [1 ]
Yang, Changye [1 ]
Delp, Edward J. [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, Video & Image Proc Lab VIPER, W Lafayette, IN 47907 USA
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
semi-supervised learning; plant phenotyping; panicle detection; sorghum;
D O I
10.1109/IGARSS52108.2023.10282281
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The sorghum panicle is an important trait related to grain yield and plant development. Detecting and counting sorghum panicles can provide significant information for plant phenotyping. Current deep-learning-based object detection methods for panicles require a large amount of training data. The data labeling is time-consuming and not feasible for real application. In this paper, we present an approach to reduce the amount of training data for sorghum panicle detection via semi-supervised learning. Results show we can achieve similar performance as supervised methods for sorghum panicle detection by only using 10% of original training data.
引用
收藏
页码:6482 / 6485
页数:4
相关论文
共 18 条
[1]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZEN0D0.7347926
[2]  
Berthelot D., 2019, P INT C NEUR INF PRO
[3]   PANICLE COUNTING IN UAV IMAGES FOR ESTIMATING FLOWERING TIME IN SORGHUM [J].
Cai, Enyu ;
Baireddy, Sriram ;
Yang, Changye ;
Crawford, Melba ;
Delp, Edward J. .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :6280-6283
[4]   Pheno-Copter: A Low-Altitude, Autonomous Remote-Sensing Robotic Helicopter for High-Throughput Field-Based Phenotyping [J].
Chapman, Scott C. ;
Merz, Torsten ;
Chan, Amy ;
Jackway, Paul ;
Hrabar, Stefan ;
Dreccer, M. Fernanda ;
Holland, Edward ;
Zheng, Bangyou ;
Ling, T. Jun ;
Jimenez-Berni, Jose .
AGRONOMY-BASEL, 2014, 4 (02) :279-301
[5]  
Grandvalet Yves, 2004, P ADV NEUR INF PROC, P529
[6]   Improving Orthorectification of UAV-Based Push-Broom Scanner Imagery Using Derived Orthophotos From Frame Cameras [J].
Habib, Ayman ;
Xiong, Weifeng ;
He, Fangning ;
Yang, Hsiuhan Lexie ;
Crawford, Melba .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (01) :262-276
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Lee D.-H., 2013, Workshop on challenges in representation learning, ICML, V3, P896
[9]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[10]   Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning [J].
Lin, Zhe ;
Guo, Wenxuan .
FRONTIERS IN PLANT SCIENCE, 2020, 11