Durability and damage model of polyacrylonitrile fiber reinforced concrete under freeze-thaw and erosion

被引:15
|
作者
Duan, Minghan [1 ]
Qin, Yuan [1 ]
Li, Yang [1 ]
Zhou, Heng [2 ]
机构
[1] Xian Univ Technol, State Key Lab Ecohydraul Northwest Arid Reg, 5 South Jinhua Rd, Xian 710048, Shaanxi, Peoples R China
[2] Power China Northwest Engn Corp Ltd, Xian 710065, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyacrylonitrile fiber-reinforced concrete; Alpine saline soil area; Salt-freezing; Macro and micro deterioration; Failure mechanism; Damage model; FLY-ASH; TRANSPORT-PROPERTIES; STEEL FIBER; RESISTANCE; MECHANISM; MICROSTRUCTURE; AGGREGATE; ATTACK;
D O I
10.1016/j.conbuildmat.2023.132238
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In an alpine saline soil area, the combined effect of freeze-thaw and erosion ions causes the imbalance of concrete durability. In studying the macro-meso deterioration law and failure mechanism of polyacrylonitrile fiber-reinforced concrete (PANFC) under this action, PANFC specimens formed by open-air curing were pre -pared, and a composite salt solution containing 5% MgSO4, 5% Na2SO4, and 3.5% NaCl was used as the freeze-thaw medium for salt-freezing test. Results demonstrate that the degradation of PANFC under salt-frost conditions can be divided into the micro-damage stage and damage acceleration stage, with 50 cycles as the limit. When the content of PAN fiber is 1.5-1.8 kg/m3, the salt frost resistance of concrete is advantageous. The macro-scale results show that the relative dynamic elastic modulus and ultrasonic wave velocity of PANFC decrease with the increase of salt-freezing cycles, whereas the weight of PANFC increases before 25 salt-freezing cycles. The meso-scale results show that after 50 cycles, the evolution of micro-pores to macro-pores and micro-cracks in PANFC is accelerated. The pore size ratio of micro-pores (0-0.1 & mu;m) decreases with the increase of cycles, and the pore size ratio of micro-cracks (greater than10 & mu;m) increases with the increase of cycles. Failure mechanism analysis shows that the failure of PANFC results from the combined effect of surface damage and internal damage. Finally, the salt-frost damage model of PANFC was established on the basis of the damage mechanics and classical Aas-Jakobsen fatigue theory, and the damage determination value D(n) was between 0.2527 and 0.2781. Using D(n), the failure criteria of concrete damaged under salt-frost conditions can be re-evaluated.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Damage Model of Steel Fiber-Reinforced Coal Gangue Concrete under Freeze-Thaw Cycles Based on Weibull Distribution
    Cheng, Yaohui
    Sun, Li
    Li, Yongjing
    Liu, Mengxin
    He, Ruixia
    Jin, Xiaoying
    Jin, Huijun
    MATERIALS, 2023, 16 (20)
  • [22] Durability of wheat straw ash concrete exposed to freeze-thaw damage
    Al-Akhras, Nabil M.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2011, 164 (02) : 79 - 86
  • [23] Damage characteristics of hybrid fiber reinforced concrete under the freeze-thaw cycles and compound-salt attack
    Xia, Dongtao
    Yu, Shiting
    Yu, Jiali
    Feng, Chenlu
    Li, Biao
    Zheng, Zhi
    Wu, Hao
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2023, 18
  • [24] Concrete Durability after Load Damage and Salt Freeze-Thaw Cycles
    Zhou, Jiguo
    Wang, Guihua
    Liu, Peng
    Guo, Xuefeng
    Xu, Jun
    MATERIALS, 2022, 15 (13)
  • [25] Constitutive Damage Model for Rubber Fiber-Reinforced Expansive Soil under Freeze-Thaw Cycles
    Wang, Rongchang
    Yang, Zhongnian
    Ling, Xianzhang
    Shi, Wei
    Sun, Zhenxing
    Qin, Xipeng
    MATERIALS, 2024, 17 (20)
  • [26] Mechanical performance of steel fiber reinforced concrete under the action of freeze-thaw circulation
    Xie, Xiaopeng
    Gao, Danying
    ISISS 2005: Innovation & Sustainability of Structures, Vol 1-3, 2005, : 2242 - 2249
  • [27] Preconditioning concrete for better freeze-thaw durability
    Badr, A.
    CONCRETE SOLUTIONS, 2012, : 187 - 194
  • [28] Material Properties of Synthetic Fiber-Reinforced Concrete under Freeze-Thaw Conditions
    Al Rikabi, Fouad T.
    Sargand, Shad M.
    Khoury, Issam
    Hussein, Husam H.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2018, 30 (06)
  • [29] Durability Analysis of High-Performance Concrete Under Chloride Salt Erosion and Freeze-Thaw Cycles
    Feng B.
    Liu Q.
    Qian Y.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (05): : 1083 - 1089
  • [30] Damage constitutive model of coal gangue concrete under freeze-thaw cycles
    Qiu, Jisheng
    Zhou, Yunxian
    Vatin, Nikolay Ivanovich
    Guan, Xiao
    Sultanov, Shukhrat
    Khemarak, Khon
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 264