Some Fixed-Point Results for the KF-Iteration Process in Hyperbolic Metric Spaces

被引:5
作者
Sahin, Aynur [1 ]
Ozturk, Emre [1 ]
Aggarwal, Gaurav [2 ]
机构
[1] Sakarya Univ, Fac Sci, Dept Math, TR-54050 Serdivan, Turkiye
[2] Jaypee Inst Informat Technol, Dept Math, Noida 201309, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
generalized; (alpha; beta)-nonexpansive mapping; hyperbolic metric space; the KF-iteration process; fixed-point theorem; data dependence; weak w(2)-stability; ALPHA-NONEXPANSIVE MAPPINGS; CONVERGENCE; SCHEME;
D O I
10.3390/sym15071360
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we modify the KF-iteration process into hyperbolic metric spaces where the symmetry condition is satisfied and establish the weak w(2)-stability and data dependence results for contraction mappings. We also prove some D-convergence and strong convergence theorems for generalized (alpha,beta)-nonexpansive type 1 mappings. Finally, we offer a numerical example of generalized (alpha,beta)-nonexpansive type 1 mappings and show that the KF-iteration process is more effective than some other iterations. Our results generalize and improve several relevant results in the literature.
引用
收藏
页数:16
相关论文
共 35 条
  • [31] A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings
    Thakur, Balwant Singh
    Thakur, Dipti
    Postolache, Mihai
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 147 - 155
  • [32] Timis I, 2010, ANN UNIV CRAIOVA-MAT, V37, P106
  • [33] Numerical reckoning fixed points via new faster iteration process
    Ullah, Kifayat
    Ahmad, Junaid
    Khan, Fida Muhammad
    [J]. APPLIED GENERAL TOPOLOGY, 2022, 23 (01): : 213 - 223
  • [34] Numerical Reckoning Fixed Points for Suzuki's Generalized Nonexpansive Mappings via New Iteration Process
    Ullah, Kifayat
    Arshad, Muhammad
    [J]. FILOMAT, 2018, 32 (01) : 187 - 196
  • [35] Zhang SS., 1975, J SICHUAN U, V2, P67