Some Fixed-Point Results for the KF-Iteration Process in Hyperbolic Metric Spaces

被引:5
作者
Sahin, Aynur [1 ]
Ozturk, Emre [1 ]
Aggarwal, Gaurav [2 ]
机构
[1] Sakarya Univ, Fac Sci, Dept Math, TR-54050 Serdivan, Turkiye
[2] Jaypee Inst Informat Technol, Dept Math, Noida 201309, India
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 07期
关键词
generalized; (alpha; beta)-nonexpansive mapping; hyperbolic metric space; the KF-iteration process; fixed-point theorem; data dependence; weak w(2)-stability; ALPHA-NONEXPANSIVE MAPPINGS; CONVERGENCE; SCHEME;
D O I
10.3390/sym15071360
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we modify the KF-iteration process into hyperbolic metric spaces where the symmetry condition is satisfied and establish the weak w(2)-stability and data dependence results for contraction mappings. We also prove some D-convergence and strong convergence theorems for generalized (alpha,beta)-nonexpansive type 1 mappings. Finally, we offer a numerical example of generalized (alpha,beta)-nonexpansive type 1 mappings and show that the KF-iteration process is more effective than some other iterations. Our results generalize and improve several relevant results in the literature.
引用
收藏
页数:16
相关论文
共 35 条
  • [1] Abbas M, 2014, MAT VESTN, V66, P223
  • [2] Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P61
  • [3] Akutsah F., 2021, Nonlinear Functional Analysis and Applications, V26, P663, DOI 10.22771/nfaa.2021.26.04.02
  • [4] Convergence of AA-Iterative Algorithm for Generalized α-Nonexpansive Mappings with an Application
    Beg, Ismat
    Abbas, Mujahid
    Asghar, Muhammad Waseem
    [J]. MATHEMATICS, 2022, 10 (22)
  • [5] Berinde V, 2007, LECT NOTES MATH, V1912, P1
  • [6] Bridson M R, 1999, GRUNDL MATH WISSEN, V319
  • [7] Cardinali T, 2010, FIXED POINT THEOR-RO, V11, P3
  • [8] On fixed point results for some generalized nonexpansive mappings
    Dehaish, Buthinah A. Bin
    Alharbi, Rawan K.
    [J]. AIMS MATHEMATICS, 2023, 8 (03): : 5763 - 5778
  • [9] ON STRUCTURE OF SET OF SUBSEQUENTIAL LIMIT POINTS OF SUCCESSIVE APPROXIMATIONS
    DIAZ, JB
    METCALF, FT
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (04) : 516 - &
  • [10] Fixed point theory for a class of generalized nonexpansive mappings
    Garcia-Falset, Jesus
    Llorens-Fuster, Enrique
    Suzuki, Tomonari
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) : 185 - 195