Enhancing the Integral Structural and Thermal Stability of Ultrahigh-Ni Cathodes via Morphology Refinement and In Situ Interfacial Engineering

被引:9
作者
Jiang, Yuandi [1 ]
Guo, Fuqiren [1 ]
Qiu, Lang [1 ]
Liu, Tongli [1 ]
Hu, Yang [1 ]
Yang, Wen [1 ]
Liu, Yang [2 ]
Sun, Yan [3 ]
Wu, Zhenguo [1 ]
Song, Yang [1 ]
Guo, Xiaodong [1 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Henan Normal Univ, Sch Mat Sci & Engn, Xinxiang 453007, Henan, Peoples R China
[3] Chengdu Univ, Sch Mech Engn, Chengdu 610106, Sichuan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lithium-ion batteries; high-Ni layered cathodes; dual-modification; intergranular cracks; RICH CATHODE; PERFORMANCE; LI;
D O I
10.1021/acsami.3c07022
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nickel-rich layered oxides are promising cathodes incommercialmaterials for lithium-ion batteries. However, the increase of thenickel content leads to the decay of cyclic performance and thermalstability. Herein, in situ surface-fluorinated W-doping LiNi0.90Co0.05Mn0.05O2 cathodes enhanceintegral lithium-ion migration (transfer in bulk and diffusion inthe interface) kinetics by synergistically solving the problems ofbulk and interface structural degradation. Owing to the introductionof tungsten, the growth of primary particles is regulated toward the(003) crystal plane and with the acicular structure, which furtherstabilizes the bulk structure during cycling. Moreover, the LiF coatinglayer on the cathode/electrolyte interface physically isolates theattack of the electrolyte on the surface cathodes and acceleratesthe lithium-ion diffusion rate, ultimately ameliorating the interfacialdynamics and structural stability. Dual-modified LiNi0.90Co0.05Mn0.05O2 exhibits superiorelectrochemical properties, especially more remarkable cyclic retention(88.16% vs 70.44%) after 100 cycles at 1 C and more outstanding highcurrent rate properties (173.31 mAh & BULL;g(-1) vs135.97 mAh & BULL;g(-1)) at 5 C than the pristine one.This work emphasizes the probability of an integrated optimizationstrategy for Ni-rich materials, which provides an innovative ideafor ameliorating (bulk and interfacial) structure degradation andpromoting the diffusion of lithium ions during cycling.
引用
收藏
页码:35072 / 35081
页数:10
相关论文
共 44 条
  • [1] Single-crystal spinel Li1.08Mn1.92O4 octahedra cathode covered with Li-ion permeable robust NMC thin-layer protection for high voltage lithium- ion batteries
    Ahuja, Aakash
    Kumar, Ajit
    Sengupta, Abhinanda
    Gautam, Manoj
    Lohani, Harshita
    Kumari, Pratima
    Mitra, Sagar
    [J]. ENERGY STORAGE MATERIALS, 2022, 52 : 169 - 179
  • [2] Cobalt-Free High-Capacity Ni-Rich Layered Li[Ni0.9Mn0.1]O2 Cathode
    Aishova, Assylzat
    Park, Geon-Tae
    Yoon, Chong S.
    Sun, Yang-Kook
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (04)
  • [3] Enhanced electrochemical performance and thermal stability of LiNi0.80Co0.15Al0.05O2 via nano-sized LiMnPO4 coating
    Duan, Jianguo
    Wu, Ceng
    Cao, Yanbing
    Du, Ke
    Peng, Zhongdong
    Hu, Guorong
    [J]. ELECTROCHIMICA ACTA, 2016, 221 : 14 - 22
  • [4] In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes
    Fan, Xinming
    Ou, Xing
    Zhao, Wengao
    Liu, Yun
    Zhang, Bao
    Zhang, Jiafeng
    Zou, Lianfeng
    Seidl, Lukas
    Li, Yangzhong
    Hu, Guorong
    Battaglia, Corsin
    Yang, Yong
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] One-step electrochemical in-situ Li doping and LiF coating enable ultra-stable cathode for sodium ion batteries
    Feng, Jiameng
    Zheng, Chaoliang
    Fang, De
    Li, Jianling
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2023, 82 : 228 - 238
  • [6] Intrinsic Kinetic Limitations in Substituted Lithium-Layered Transition-Metal Oxide Electrodes
    Grenier, Antonin
    Reeves, Philip J.
    Liu, Hao
    Seymour, Ieuan D.
    Marker, Katharina
    Wiaderek, Kamila M.
    Chupas, Peter J.
    Grey, Clare P.
    Chapman, Karena W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (15) : 7001 - 7011
  • [7] An in-depth analysis detailing the structural and electrochemical properties within Br- modified LiNi0.815Co0.15A0.035O2 (NCA) cathode material
    He, Shiyu
    Wei, Aijia
    Li, Wen
    Bai, Xue
    Zhang, Lihui
    Li, Xiaohui
    He, Rui
    Yang, Lili
    Liu, Zhenfa
    [J]. ELECTROCHIMICA ACTA, 2019, 318 : 362 - 373
  • [8] Structure and Charge Regulation Strategy Enabling Superior Cyclability for Ni-Rich Layered Cathode Materials
    Huang, Wei
    Li, Wenjin
    Wang, Lve
    Zhu, He
    Gao, Min
    Zhao, Huan
    Zhao, Jinling
    Shen, Xueling
    Wang, Xiaodan
    Wang, Ze
    Qi, Chuanlei
    Xiao, Wei
    Yao, Lei
    Wang, Jiantao
    Zhuang, Weidong
    Sun, Xueliang
    [J]. SMALL, 2021, 17 (52)
  • [9] Improving the Structure and Cycling Stability of Ni-Rich Layered Cathodes by Dual Modification of Yttrium Doping and Surface Coating
    Huang, Yan
    Cao, Shuang
    Xie, Xin
    Wu, Chao
    Jamil, Sidra
    Zhao, Qinglan
    Chang, Baobao
    Wang, Ying
    Wang, Xianyou
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (17) : 19483 - 19494
  • [10] High-Energy W-Doped Li[Ni0.95Co0.04Al0.01]O2 Cathodes for Next-Generation Electric Vehicles
    Kim, Un-Hyuck
    Park, Nam-Yung
    Park, Geon-Tae
    Kim, Hun
    Yoon, Chong S.
    Sun, Yang-Kook
    [J]. ENERGY STORAGE MATERIALS, 2020, 33 (33) : 399 - 407