Artificial intelligence-based clustering and characterization of Parkinson's disease trajectories

被引:10
作者
Birkenbihl, Colin [3 ,4 ]
Ahmad, Ashar [1 ,6 ]
Massat, Nathalie J. [1 ,2 ]
Raschka, Tamara [3 ,4 ]
Avbersek, Andreja [1 ,5 ]
Downey, Patrick [1 ]
Armstrong, Martin [1 ]
Froehlich, Holger [3 ,4 ]
机构
[1] UCB Pharma, Chemin Foriest 1, B-1420 Braine Llalleud, Belgium
[2] Veramed Ltd, 5th Floor Regal House,70 London Rd, Twickenham TW1 3QS, England
[3] Fraunhofer Inst Algorithms & Sci Comp SCAI, Dept Bioinformat, D-53757 St Augustin, Germany
[4] Univ Bonn, Aachen Int Ctr IT, Friedrich Hirzebruch-Allee 6, D-53115 Bonn, Germany
[5] Regeneron Inc., 777 Old Saw Mill River Rd, Tarrytown, NY 10591 USA
[6] Grunenthal GmbH, D-52078 Aachen, Germany
基金
欧盟地平线“2020”;
关键词
SLEEP BEHAVIOR DISORDER; OXIDATIVE STRESS; SUBTYPES; IDENTIFICATION; PROGRESSION; EXPRESSION; BIOMARKERS; GENES; MOTOR;
D O I
10.1038/s41598-023-30038-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parkinson's disease (PD) is a highly heterogeneous disease both with respect to arising symptoms and its progression over time. This hampers the design of disease modifying trials for PD as treatments which would potentially show efficacy in specific patient subgroups could be considered ineffective in a heterogeneous trial cohort. Establishing clusters of PD patients based on their progression patterns could help to disentangle the exhibited heterogeneity, highlight clinical differences among patient subgroups, and identify the biological pathways and molecular players which underlie the evident differences. Further, stratification of patients into clusters with distinct progression patterns could help to recruit more homogeneous trial cohorts. In the present work, we applied an artificial intelligence-based algorithm to model and cluster longitudinal PD progression trajectories from the Parkinson's Progression Markers Initiative. Using a combination of six clinical outcome scores covering both motor and non-motor symptoms, we were able to identify specific clusters of PD that showed significantly different patterns of PD progression. The inclusion of genetic variants and biomarker data allowed us to associate the established progression clusters with distinct biological mechanisms, such as perturbations in vesicle transport or neuroprotection. Furthermore, we found that patients of identified progression clusters showed significant differences in their responsiveness to symptomatic treatment. Taken together, our work contributes to a better understanding of the heterogeneity encountered when examining and treating patients with PD, and points towards potential biological pathways and genes that could underlie those differences.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Oligomeric α-Syn and SNARE complex proteins in peripheral extracellular vesicles of neural origin are biomarkers for Parkinson's disease [J].
Agliardi, Cristina ;
Meloni, Mario ;
Guerini, Franca Rosa ;
Zanzottera, Milena ;
Bolognesi, Elisabetta ;
Baglio, Francesca ;
Clerici, Mario .
NEUROBIOLOGY OF DISEASE, 2021, 148
[2]   Gene Therapy for Parkinson's Disease, An Update [J].
Axelsen, Tobias M. ;
Woldbye, David P. D. .
JOURNAL OF PARKINSONS DISEASE, 2018, 8 (02) :195-215
[3]   The Parkinson's Disease Protein LRRK2 Interacts with the GARP Complex to Promote Retrograde Transport to the trans-Golgi Network [J].
Beilina, Alexandra ;
Bonet-Ponce, Luis ;
Kumaran, Ravindran ;
Kordich, Jennifer J. ;
Ishida, Morie ;
Mamais, Adamantios ;
Kaganovich, Alice ;
Saez-Atienzar, Sara ;
Gershlick, David C. ;
Roosen, Dorien A. ;
Pellegrini, Laura ;
Malkov, Vlad ;
Fell, Matthew J. ;
Harvey, Kirsten ;
Bonifacino, Juan S. ;
Moore, Darren J. ;
Cookson, Mark R. .
CELL REPORTS, 2020, 31 (05)
[4]  
BITTNER MA, 1992, J BIOL CHEM, V267, P16219
[5]   The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 [J].
Buniello, Annalisa ;
MacArthur, Jacqueline A. L. ;
Cerezo, Maria ;
Harris, Laura W. ;
Hayhurst, James ;
Malangone, Cinzia ;
McMahon, Aoife ;
Morales, Joannella ;
Mountjoy, Edward ;
Sollis, Elliot ;
Suveges, Daniel ;
Vrousgou, Olga ;
Whetzel, Patricia L. ;
Amode, Ridwan ;
Guillen, Jose A. ;
Riat, Harpreet S. ;
Trevanion, Stephen J. ;
Hall, Peggy ;
Junkins, Heather ;
Flicek, Paul ;
Burdett, Tony ;
Hindorff, Lucia A. ;
Cunningham, Fiona ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1005-D1012
[6]   The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease [J].
Cookson, Mark R. .
NATURE REVIEWS NEUROSCIENCE, 2010, 11 (12) :791-797
[7]  
Croft D, 2014, NUCLEIC ACIDS RES, V42, pD472, DOI [10.1093/nar/gkz1031, 10.1093/nar/gkt1102]
[8]   Deep learning for clustering of multivariate clinical patient trajectories with missing values [J].
de Jong, Johann ;
Emon, Mohammad Asif ;
Wu, Ping ;
Karki, Reagon ;
Sood, Meemansa ;
Godard, Patrice ;
Ahmad, Ashar ;
Vrooman, Henri ;
Hofmann-Apitius, Martin ;
Froehlich, Holger .
GIGASCIENCE, 2019, 8 (11)
[9]   Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data [J].
Denny, Joshua C. ;
Bastarache, Lisa ;
Ritchie, Marylyn D. ;
Carroll, Robert J. ;
Zink, Raquel ;
Mosley, Jonathan D. ;
Field, Julie R. ;
Pulley, Jill M. ;
Ramirez, Andrea H. ;
Bowton, Erica ;
Basford, Melissa A. ;
Carrell, David S. ;
Peissig, Peggy L. ;
Kho, Abel N. ;
Pacheco, Jennifer A. ;
Rasmussen, Luke V. ;
Crosslin, David R. ;
Crane, Paul K. ;
Pathak, Jyotishman ;
Bielinski, Suzette J. ;
Pendergrass, Sarah A. ;
Xu, Hua ;
Hindorff, Lucia A. ;
Li, Rongling ;
Manolio, Teri A. ;
Chute, Christopher G. ;
Chisholm, Rex L. ;
Larson, Eric B. ;
Jarvik, Gail P. ;
Brilliant, Murray H. ;
McCarty, Catherine A. ;
Kullo, Iftikhar J. ;
Haines, Jonathan L. ;
Crawford, Dana C. ;
Masys, Daniel R. ;
Roden, Dan M. .
NATURE BIOTECHNOLOGY, 2013, 31 (12) :1102-+
[10]   Multimodal mechanistic signatures for neurodegenerative diseases (NeuroMMSig): a web server for mechanism enrichment [J].
Domingo-Fernandez, Daniel ;
Kodamullil, Alpha Tom ;
Iyappan, Anandhi ;
Naz, Mufassra ;
Emon, Mohammad Asif ;
Raschka, Tamara ;
Karki, Reagon ;
Springstubbe, Stephan ;
Ebeling, Christian ;
Hofmann-Apitius, Martin .
BIOINFORMATICS, 2017, 33 (22) :3679-3681