Application of self-attention conditional deep convolutional generative adversarial networks in the fault diagnosis of planetary gearboxes

被引:5
|
作者
Luo, Jia [1 ]
Huang, Jingying [1 ,2 ]
Ma, Jiancheng [1 ]
Liu, Siyuan [1 ]
机构
[1] North Univ China, Coll Mech Engn, Taiyuan, Shanxi, Peoples R China
[2] North Univ China, Coll Mech Engn, Taiyuan 030051, Shanxi, Peoples R China
关键词
Self-attention mechanism; generative adversarial networks; planetary gearboxes; fault diagnosis;
D O I
10.1177/1748006X221147784
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Generative Adversarial Network (GAN) can generate samples similar to the original data to solve the problem of fault sample imbalance in planetary gearbox fault diagnosis. Most of models rely heavily on convolution to model the dependencies across feature vectors of vibration signals. However, the characterization ability of convolution operator is limited by the size of convolution kernel and it cannot capture the long-distance dependence in the original data. In this paper, self-attention is introduced into Conditional Deep Convolutional Generative Adversarial Networks (C-DCGAN). In the model, vibration features are dynamically weighted and merged, so that it can adaptively focus "attention" on different times to solve the problem of sample differences caused by time-varying vibration signals. Finally, the proposed method is verified on the planetary gearbox experiment and the quality of the generated signal samples is evaluated with Dynamic Time Warping (DTW) algorithm. The visual experimental results indicated that the proposed model performed better than conditional deep convolutional generative adversarial networks (C-DCGAN) and could accurately diagnose various working states of planetary gearboxes.
引用
收藏
页码:260 / 273
页数:14
相关论文
共 50 条
  • [31] Research on Deep Convolutional Generative Adversarial Networks Diagnosis Method of Bearing Fault Under Small Sample Condition
    Liu Y.
    Cai H.
    Li W.
    Zhao S.
    Liu C.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2023, 43 (04): : 817 - 823and836
  • [32] Leak detection and localization in water distribution networks using conditional deep convolutional generative adversarial networks
    Rajabi, Mohammad Mahdi
    Komeilian, Pooya
    Wan, Xi
    Farmani, Raziyeh
    WATER RESEARCH, 2023, 238
  • [33] Data augment method for machine fault diagnosis using conditional generative adversarial networks
    Wang, Jinrui
    Han, Baokun
    Bao, Huaiqian
    Wang, Mingyan
    Chu, Zhenyun
    Shen, Yuwei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2020, 234 (12) : 2719 - 2727
  • [34] An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes
    Han, Yan
    Tang, Baoping
    Deng, Lei
    COMPUTERS IN INDUSTRY, 2019, 107 : 50 - 58
  • [35] Bearing fault diagnosis network based on adaptive dimension-increasing and convolutional self-attention
    Guan, Le
    Wang, Xinyang
    Yang, Duo
    Zhang, Tianqi
    Zhu, Li
    Chen, Jianguo
    Wang, Zhen
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (17): : 289 - 299
  • [36] Multiscale convolutional conditional domain adversarial network with channel attention for unsupervised bearing fault diagnosis
    Wang, Haomiao
    Li, Yibin
    Jiang, Mingshun
    Zhang, Faye
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2024, 238 (06) : 1123 - 1134
  • [37] SA-CapsGAN: Using Capsule Networks with embedded self-attention for Generative Adversarial Network
    Sun, Guangcong
    Ding, Shifei
    Sun, Tongfeng
    Zhang, Chenglong
    NEUROCOMPUTING, 2021, 423 (423) : 399 - 406
  • [38] Imbalanced Fault Diagnosis of Rotating Machinery Based on Deep Generative Adversarial Networks with Gradient Penalty
    Luo, Junqi
    Zhu, Liucun
    Li, Quanfang
    Liu, Daopeng
    Chen, Mingyou
    PROCESSES, 2021, 9 (10)
  • [39] SADD: Generative Adversarial Networks via Self-attention and Dual Discriminator in Unsupervised Domain Adaptation
    Dai, Zaiyan
    Yang, Jun
    Fan, Anfei
    Jia, Jinyin
    Chen, Junfan
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 473 - 484
  • [40] An intelligent fault diagnosis approach for planetary gearboxes based on deep belief networks and uniformed features
    Wang, Xin
    Qin, Yi
    Zhang, Aibing
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3619 - 3634