Application of self-attention conditional deep convolutional generative adversarial networks in the fault diagnosis of planetary gearboxes

被引:5
|
作者
Luo, Jia [1 ]
Huang, Jingying [1 ,2 ]
Ma, Jiancheng [1 ]
Liu, Siyuan [1 ]
机构
[1] North Univ China, Coll Mech Engn, Taiyuan, Shanxi, Peoples R China
[2] North Univ China, Coll Mech Engn, Taiyuan 030051, Shanxi, Peoples R China
关键词
Self-attention mechanism; generative adversarial networks; planetary gearboxes; fault diagnosis;
D O I
10.1177/1748006X221147784
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Generative Adversarial Network (GAN) can generate samples similar to the original data to solve the problem of fault sample imbalance in planetary gearbox fault diagnosis. Most of models rely heavily on convolution to model the dependencies across feature vectors of vibration signals. However, the characterization ability of convolution operator is limited by the size of convolution kernel and it cannot capture the long-distance dependence in the original data. In this paper, self-attention is introduced into Conditional Deep Convolutional Generative Adversarial Networks (C-DCGAN). In the model, vibration features are dynamically weighted and merged, so that it can adaptively focus "attention" on different times to solve the problem of sample differences caused by time-varying vibration signals. Finally, the proposed method is verified on the planetary gearbox experiment and the quality of the generated signal samples is evaluated with Dynamic Time Warping (DTW) algorithm. The visual experimental results indicated that the proposed model performed better than conditional deep convolutional generative adversarial networks (C-DCGAN) and could accurately diagnose various working states of planetary gearboxes.
引用
收藏
页码:260 / 273
页数:14
相关论文
共 50 条
  • [21] Improving Human Pose Estimation With Self-Attention Generative Adversarial Networks
    Wang, Xiangyang
    Cao, Zhongzheng
    Wang, Rui
    Liu, Zhi
    Zhu, Xiaoqiang
    IEEE ACCESS, 2019, 7 : 119668 - 119680
  • [22] Application of Generative Adversarial Networks for Intelligent Fault Diagnosis
    Cao, Sican
    Wen, Long
    Li, Xinyu
    Gao, Liang
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2018, : 711 - 715
  • [23] Parameter sharing adversarial domain adaptation networks for fault transfer diagnosis of planetary gearboxes
    Qin, Yi
    Yao, Qunwang
    Wang, Yi
    Mao, Yongfang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 160
  • [24] Composite Fault Diagnosis Based on Deep Convolutional Generative Adversarial Network
    Zhang Yonghong
    Zhang Zhongyang
    Shao Fan
    Wang Yifei
    Zhao Xiaoping
    Lv Kaiyang
    2020 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ADVANCED RELIABILITY AND MAINTENANCE MODELING (APARM), 2020,
  • [25] Convolutional Self-Attention Networks
    Yang, Baosong
    Wang, Longyue
    Wong, Derek F.
    Chao, Lidia S.
    Tu, Zhaopeng
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 4040 - 4045
  • [26] Retinal Vessel Segmentation Based on Conditional Deep Convolutional Generative Adversarial Networks
    Jiang Y.
    Tan N.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (01): : 136 - 147
  • [27] Designing nanophotonic structures using conditional deep convolutional generative adversarial networks
    So, Sunae
    Rho, Junsuk
    NANOPHOTONICS, 2019, 8 (07) : 1255 - 1261
  • [28] A Self-Attention Based Wasserstein Generative Adversarial Networks for Single Image Inpainting
    Mao, Yuanxin
    Zhang, Tianzhuang
    Fu, Bo
    Thanh, Dang N. H.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2022, 32 (03) : 591 - 599
  • [29] A Self-Attention Based Wasserstein Generative Adversarial Networks for Single Image Inpainting
    Yuanxin Mao
    Tianzhuang Zhang
    Bo Fu
    Dang N. H. Thanh
    Pattern Recognition and Image Analysis, 2022, 32 : 591 - 599
  • [30] A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis
    Liu, Yunpeng
    Jiang, Hongkai
    Wang, Yanfeng
    Wu, Zhenghong
    Liu, Shaowei
    MEASUREMENT, 2022, 192