Weighted Inequalities For The Numerical Radius

被引:25
作者
Sheybani, Shiva [1 ]
Sababheh, Mohammed [2 ]
Moradi, Hamid Reza [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Mashhad Branch, Mashhad, Razavi Khorasan, Iran
[2] Princess Sumaya Univ Technol, Dept Basic Sci, Amman 11941, Jordan
[3] Payame Noor Univ PNU, Dept Math, POB 19395-4697, Tehran, Iran
关键词
Bounded linear operators; Numerical radius; Operator norm; Inequality; BOUNDS;
D O I
10.1007/s10013-021-00533-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we obtain several new weighted bounds for the numerical radius of a Hilbert space operator. The significance of the obtained results is the way they generalize many existing results in the literature; where certain values of the weights imply some known results, or refinements of these results. In the end, we present some numerical examples that show how our results refine the well known results in the literature, related to this topic.
引用
收藏
页码:363 / 377
页数:15
相关论文
共 14 条
[1]   A numerical radius inequality involving the generalized Aluthge transform [J].
Abu Omar, Amer ;
Kittaneh, Fuad .
STUDIA MATHEMATICA, 2013, 216 (01) :69-75
[2]   Some generalized theorems on p-hyponormal operators [J].
Aluthge, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 24 (04) :497-501
[3]  
BHATIA R, 1995, LINEAR ALGEBRA APPL, V224, P119
[4]  
Halmos P.R., 1982, HILBERT SPACE PROBLE, V19, DOI [10.1007/978-1-4684-9330-6, DOI 10.1007/978-1-4684-9330-6]
[5]  
Kato Tosio., 1952, Math. Ann, V125, P208, DOI [10.1007/BF01343117, DOI 10.1007/BF01343117]
[6]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80
[7]   A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2003, 158 (01) :11-17
[8]   CAUCHY-SCHWARZ TYPE INEQUALITIES AND APPLICATIONS TO NUMERICAL RADIUS INEQUALITIES [J].
Kittaneh, Fuad ;
Moradi, Hamid Reza .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03) :1117-1125
[9]   CP [J].
MCCARTHY, CA .
ISRAEL JOURNAL OF MATHEMATICS, 1967, 5 (04) :249-&
[10]   More accurate numerical radius inequalities (II) [J].
Moradi, Hamid Reza ;
Sababheh, Mohammad .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) :921-933