Asynchronous State Estimation of Simultaneous Ego-motion Estimation and Multiple Object Tracking for LiDAR-Inertial Odometry

被引:18
作者
Lin, Yu-Kai [1 ]
Lin, Wen-Chieh [1 ]
Wang, Chieh-Chih [2 ,3 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Multimedia Engn, Hsinchu, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Dept Elect & Comp Engn, Hsinchu, Taiwan
[3] Ind Technol Res Inst, Mech & Mechatron Syst Res Labs, Hsinchu, Taiwan
来源
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023) | 2023年
关键词
Autonomous driving; SLAM; odometry; multiple object tracking; SIMULTANEOUS LOCALIZATION; ROBUST;
D O I
10.1109/ICRA48891.2023.10161269
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose LiDAR-Inertial Odometry via Simultaneous EGo-motion estimation and Multiple Object Tracking (LIO-SEGMOT), an optimization-based odometry approach targeted for dynamic environments. LIO-SEGMOT is formulated as a state estimation approach with asynchronous state update of the odometry and the object tracking. That is, LIO-SEGMOT can provide continuous object tracking results while preserving the keyframe selection mechanism in the odometry system. Meanwhile, a hierarchical criterion is designed to properly couple odometry and object tracking, preventing system instability due to poor detections. We compare LIO-SEGMOT against the baseline model LIO-SAM, a state-of-the-art LIO approach, under dynamic environments of the KITTI raw dataset and the self-collected Hsinchu dataset. The former experiment shows that LIO-SEGMOT obtains an average improvement 1.61% and 5.41% of odometry accuracy in terms of absolute translational and rotational trajectory errors. The latter experiment also indicates that LIO-SEGMOT obtains an average improvement 6.97% and 4.21% of odometry accuracy.
引用
收藏
页码:10616 / 10622
页数:7
相关论文
共 36 条
[11]   iSAM2: Incremental smoothing and mapping using the Bayes tree [J].
Kaess, Michael ;
Johannsson, Hordur ;
Roberts, Richard ;
Ila, Viorela ;
Leonard, John J. ;
Dellaert, Frank .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2012, 31 (02) :216-235
[12]   A System of Hand Interface Based on Kinect Data [J].
Kim, Gi-Woo ;
Lim, Hye-Youn ;
Kang, Dae-Seong .
2015 8TH INTERNATIONAL CONFERENCE ON DATABASE THEORY AND APPLICATION (DTA), 2015, :26-28
[13]  
Kuen-Han Lin, 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010), P3975, DOI 10.1109/IROS.2010.5649653
[14]  
Kundu A, 2011, IEEE I CONF COMP VIS, P2080, DOI 10.1109/ICCV.2011.6126482
[15]   PointPillars: Fast Encoders for Object Detection from Point Clouds [J].
Lang, Alex H. ;
Vora, Sourabh ;
Caesar, Holger ;
Zhou, Lubing ;
Yang, Jiong ;
Beijbom, Oscar .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :12689-12697
[16]  
Le Gentil C, 2019, IEEE INT CONF ROBOT, P6388, DOI [10.1109/icra.2019.8794429, 10.1109/ICRA.2019.8794429]
[17]   A Switching-Coupled Backend for Simultaneous Localization and Dynamic Object Tracking [J].
Liu, Yuzhen ;
Liu, Jiacheng ;
Hao, Yun ;
Deng, Bowen ;
Meng, Ziyang .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) :1296-1303
[18]  
Livox, 2020, LIV DET V1 1
[19]   ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras [J].
Mur-Artal, Raul ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (05) :1255-1262
[20]  
Olson E., 2012, ROBOTICS SCI SYSTEMS