Improved oscillation criteria for second order quasilinear dynamic equations of noncanonical type

被引:2
作者
Grace, Said R. [1 ,2 ]
Chhatria, G. N. [2 ]
机构
[1] Cairo Univ, Dept Engn Math, Fac Engn, Giza 12221, Egypt
[2] Sambalpur Univ, Dept Math, Sambalpur 768019, India
关键词
Dynamic equations; Time scales; Oscillation; Non-oscillation; Noncanonical form; 34C10; 34K11; 34N05; 39A10; DIFFERENTIAL-EQUATIONS; THEOREMS;
D O I
10.1007/s12215-023-00905-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present discussion is to study the following second order nonlinear delay dynamic equation of the form: [r(theta)(W-Delta(theta))alpha](Delta)+P(theta)W-beta(eta(theta))=0, theta is an element of T0=[theta 0,infinity)T under the assumption integral(theta)(0 theta)r-1/alpha(s)Delta s<infinity. We divide the research into two halves, alpha>beta and alpha<beta, and look for some lim sup type conditions that cause all solutions to oscillate. In addition, we extend the Philos-type oscillation criteria. To illustrate the analytical findings, two examples are provided.
引用
收藏
页码:127 / 140
页数:14
相关论文
共 33 条
[1]   Philos-type oscillation criteria for second order half-linear dynamic equations on time scales [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Saker, S. H. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (04) :1085-1104
[2]  
AlNemer G., 2022, AXIOMS, V11, P1
[3]  
[Anonymous], 2002, Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations
[4]   A model-based approach to stability analysis of autonomic-cardiac regulation [J].
Ataee, Pedram ;
Hahn, Jin-Oh ;
Dumont, Guy A. ;
Noubari, Hossein A. ;
Boyce, W. Thomas .
COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 61 :119-126
[5]   Oscillatory behavior of the second order general noncanonical differential equations [J].
Baculikova, B. .
APPLIED MATHEMATICS LETTERS, 2020, 104
[6]   Oscillation of second-order nonlinear noncanonical differential equations with deviating argument [J].
Baculikova, Blanka .
APPLIED MATHEMATICS LETTERS, 2019, 91 :68-75
[7]  
Bohner M, 2003, ADVANCES IN DYNAMIC EQUATIONS ON TIME SCALES, P1
[8]  
Bohner M., 2001, Dynamic Equations on Time Scales, An Introduction with Applications, DOI [10.1007/978-1-4612-0201-1, DOI 10.1007/978-1-4612-0201-1]
[9]   Boundedness and oscillation for nonlinear dynamic equations on a time scale [J].
Erbe, L ;
Peterson, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (03) :735-744
[10]   Oscillation criteria for second-order nonlinear dynamic equations on time scales [J].
Erbe, L ;
Peterson, A ;
Saker, SH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 67 :701-714