Prediction of Clinical Outcomes with Explainable Artificial Intelligence in Patients with Chronic Lymphocytic Leukemia

被引:5
作者
Hoffmann, Joerg [1 ]
Eminovic, Semil [1 ]
Wilhelm, Christian [1 ]
Krause, Stefan W. [2 ]
Neubauer, Andreas [1 ]
Thrun, Michael C. [3 ]
Ultsch, Alfred [3 ]
Brendel, Cornelia [1 ]
机构
[1] Philipps Univ Marburg, Univ Hosp Giessen & Marburg, Dept Hematol Oncol & Immunol, Baldingerstr, D-35043 Marburg, Germany
[2] Univ klinikum Erlangen, Dept Med 5, Maximilianspl 2, D-91054 Erlangen, Germany
[3] Philipps Univ Marburg, Datab, Math & Comp Sci, Hans Meerwein Str 6, D-35032 Marburg, Germany
关键词
chronic lymphocytic leukemia; artificial intelligence; ALPODS; flow cytometry; HEALTH-ORGANIZATION CLASSIFICATION; T-CELL SUBSETS; CD38; EXPRESSION; MUTATION STATUS; GENOMIC ABERRATIONS; IN-VITRO; SURVIVAL; DISEASE; CLL; ACTIVATION;
D O I
10.3390/curroncol30020148
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The International Prognostic Index (IPI) is applied to predict the outcome of chronic lymphocytic leukemia (CLL) with five prognostic factors, including genetic analysis. We investigated whether multiparameter flow cytometry (MPFC) data of CLL samples could predict the outcome by methods of explainable artificial intelligence (XAI). Further, XAI should explain the results based on distinctive cell populations in MPFC dot plots. Methods: We analyzed MPFC data from the peripheral blood of 157 patients with CLL. The ALPODS XAI algorithm was used to identify cell populations that were predictive of inferior outcomes (death, failure of first-line treatment). The diagnostic ability of each XAI population was evaluated with receiver operating characteristic (ROC) curves. Results: ALPODS defined 17 populations with higher ability than the CLL-IPI to classify clinical outcomes (ROC: area under curve (AUC) 0.95 vs. 0.78). The best single classifier was an XAI population consisting of CD4+ T cells (AUC 0.78; 95% CI 0.70-0.86; p < 0.0001). Patients with low CD4+ T cells had an inferior outcome. The addition of the CD4+ T-cell population enhanced the predictive ability of the CLL-IPI (AUC 0.83; 95% CI 0.77-0.90; p < 0.0001). Conclusions: The ALPODS XAI algorithm detected highly predictive cell populations in CLL that may be able to refine conventional prognostic scores such as IPI.
引用
收藏
页码:1903 / 1915
页数:13
相关论文
共 47 条
[1]   The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms [J].
Alaggio, Rita ;
Amador, Catalina ;
Anagnostopoulos, Ioannis ;
Attygalle, Ayoma D. ;
Araujo, Iguaracyra Barreto de Oliveira ;
Berti, Emilio ;
Bhagat, Govind ;
Borges, Anita Maria ;
Boyer, Daniel ;
Calaminici, Mariarita ;
Chadburn, Amy ;
Chan, John K. C. ;
Cheuk, Wah ;
Chng, Wee-Joo ;
Choi, John K. ;
Chuang, Shih-Sung ;
Coupland, Sarah E. ;
Czader, Magdalena ;
Dave, Sandeep S. ;
de Jong, Daphne ;
Du, Ming-Qing ;
Elenitoba-Johnson, Kojo S. ;
Ferry, Judith ;
Geyer, Julia ;
Gratzinger, Dita ;
Guitart, Joan ;
Gujral, Sumeet ;
Harris, Marian ;
Harrison, Christine J. ;
Hartmann, Sylvia ;
Hochhaus, Andreas ;
Jansen, Patty M. ;
Karube, Kennosuke ;
Kempf, Werner ;
Khoury, Joseph ;
Kimura, Hiroshi ;
Klapper, Wolfram ;
Kovach, Alexandra E. ;
Kumar, Shaji ;
Lazar, Alexander J. ;
Lazzi, Stefano ;
Leoncini, Lorenzo ;
Leung, Nelson ;
Leventaki, Vasiliki ;
Li, Xiao-Qiu ;
Lim, Megan S. ;
Liu, Wei-Ping ;
Louissaint, Abner, Jr. ;
Marcogliese, Andrea ;
Medeiros, L. Jeffrey .
LEUKEMIA, 2022, 36 (07) :1720-1748
[2]   Recurrent mutations refine prognosis in chronic lymphocytic leukemia [J].
Baliakas, P. ;
Hadzidimitriou, A. ;
Sutton, L-A ;
Rossi, D. ;
Minga, E. ;
Villamor, N. ;
Larrayoz, M. ;
Kminkova, J. ;
Agathangelidis, A. ;
Davis, Z. ;
Tausch, E. ;
Stalika, E. ;
Kantorova, B. ;
Mansouri, L. ;
Scarfo, L. ;
Cortese, D. ;
Navrkalova, V. ;
Rose-Zerilli, M. J. J. ;
Smedby, K. E. ;
Juliusson, G. ;
Anagnostopoulos, A. ;
Makris, A. M. ;
Navarro, A. ;
Delgado, J. ;
Oscier, D. ;
Belessi, C. ;
Stilgenbauer, S. ;
Ghia, P. ;
Pospisilova, S. ;
Gaidano, G. ;
Campo, E. ;
Strefford, J. C. ;
Stamatopoulos, K. ;
Rosenquist, R. .
LEUKEMIA, 2015, 29 (02) :329-336
[3]  
BINET JL, 1981, CANCER-AM CANCER SOC, V48, P198, DOI 10.1002/1097-0142(19810701)48:1<198::AID-CNCR2820480131>3.0.CO
[4]  
2-V
[5]   Automated identification of stratifying signatures in cellular subpopulations [J].
Bruggner, Robert V. ;
Bodenmiller, Bernd ;
Dill, David L. ;
Tibshirani, Robert J. ;
Nolan, Garry P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (26) :E2770-E2777
[6]   CD49d Is the Strongest Flow Cytometry-Based Predictor of Overall Survival in Chronic Lymphocytic Leukemia [J].
Bulian, Pietro ;
Shanafelt, Tait D. ;
Fegan, Chris ;
Zucchetto, Antonella ;
Cro, Lilla ;
Nueckel, Holger ;
Baldini, Luca ;
Kurtova, Antonina V. ;
Ferrajoli, Alessandra ;
Burger, Jan A. ;
Gaidano, Gianluca ;
Del Poeta, Giovanni ;
Pepper, Chris ;
Rossi, Davide ;
Gattei, Valter .
JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (09) :897-+
[7]   TIGIT expressing CD4+T cells represent a tumor-supportive T cell subset in chronic lymphocytic leukemia [J].
Catakovic, Kemal ;
Gassner, Franz Josef ;
Ratswohl, Christoph ;
Zaborsky, Nadja ;
Rebhandl, Stefan ;
Schubert, Maria ;
Steiner, Markus ;
Gutjahr, Julia Christine ;
Pleyer, Lisa ;
Egle, Alexander ;
Hartmann, Tanja Nicole ;
Greil, Richard ;
Geisberger, Roland .
ONCOIMMUNOLOGY, 2018, 7 (01)
[8]   Prognostic factors in chronic lymphocytic leukemia-what do we need to know? [J].
Cramer, Paula ;
Hallek, Michael .
NATURE REVIEWS CLINICAL ONCOLOGY, 2011, 8 (01) :38-47
[9]   Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia [J].
Damle, RN ;
Wasil, T ;
Fais, F ;
Ghiotto, F ;
Valetto, A ;
Allen, SL ;
Buchbinder, A ;
Budman, D ;
Dittmar, K ;
Kolitz, J ;
Lichtman, SM ;
Schulman, P ;
Vinciguerra, VP ;
Rai, KR ;
Ferrarini, M ;
Chiorazzi, N .
BLOOD, 1999, 94 (06) :1840-1847
[10]   Genomic aberrations and survival in chronic lymphocytic leukemia. [J].
Döhner, H ;
Stilgenbauer, S ;
Benner, A ;
Leupolt, E ;
Kröber, A ;
Bullinger, L ;
Döhner, K ;
Bentz, M ;
Lichter, P .
NEW ENGLAND JOURNAL OF MEDICINE, 2000, 343 (26) :1910-1916