Additive manufacturing of 3D yttria-stabilized zirconia microarchitectures

被引:7
作者
Winczewski, J. P. [1 ]
Zeiler, S. [2 ,3 ,6 ]
Gabel, S. [2 ]
Maestre, D. [4 ]
Merle, B. [2 ,5 ]
Gardeniers, J. G. E. [1 ]
Arce, A. Susarrey [1 ]
机构
[1] Univ Twente, MESA Inst, Mesoscale Chem Syst, POB 217, NL-7500 AE Enschede, Netherlands
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst1, Mat Sci & Engn, Martensstr 5, D-91058 Erlangen, Germany
[3] Univ Leoben, Dept Mat Sci, Roseggerstr 12, A-8700 Leoben, Austria
[4] Univ Complutense Madrid, Fac Phys, Dept Mat Phys, Madrid 28040, Spain
[5] Univ Kassel, Inst Mat Engn, Moenchebergstr 3, D-34125 Kassel, Germany
[6] Univ Leoben, Dept Mat Sci, Roseggerstr 12, A-8700 Leoben, Austria
基金
欧洲研究理事会;
关键词
Additive manufacturing; 3D printing; Yttria-stabilized zirconia; Photoluminescence; Micromechanics; SOLID OXIDE FUEL; THERMAL BARRIER COATINGS; LUMINESCENCE; FABRICATION; PHOTOLUMINESCENCE; CERAMICS;
D O I
10.1016/j.matdes.2024.112701
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The additive manufacturing (AM) of yttria-stabilized zirconia (YSZ) microarchitectures with sub-micrometer precision via two-photon lithography (TPL), utilizing custom photoresin containing zirconium and yttrium monomers is investigated. YSZ 3D microarchitectures can be formed at low temperatures (600 degrees C). The low-temperature phase stabilization of ZrO2 doped with Y2O3 demonstrates that doping ZrO2 with approximate to 10 mol% Y2O3 stabilizes the c-ZrO2 phase. The approach does not utilize YSZ particles as additives. Instead, the crystallization of the YSZ phase is initiated after printing, i.e., during thermal processing in the air at 600 degrees C - 1200 degrees C for one and two hours. The YSZ microarchitectures are characterized in detail. This includes understanding the role of defect chemistry, which has been overlooked in TPL-enabled micro-ceramics. Upon UV excitation, defect-related yellowish-green emission is observed from YSZ microarchitectures associated with intrinsic and extrinsic centers, correlated with the charge compensation due to Y3+ doping. The mechanical properties of the microarchitectures are assessed with manufactured micropillars. Micropillar compression yields the intrinsic mechanical strength of YSZ. The highest strength is observed for micropillars annealed at 600 degrees C, and this characteristic decreased with an increase in the annealing temperature. The deformation behavior gradually changes from ductile to brittle-like, correlating with the Hall-Petch strengthening mechanism.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Fabrication of yttria-stabilized zirconia nanofibers by electrospinning [J].
Azad, AM .
MATERIALS LETTERS, 2006, 60 (01) :67-72
[2]   Phase stability of thermal barrier coatings made from 8 wt.% yttria stabilized zirconia: A technical note [J].
Ballard, JD ;
Davenport, J ;
Lewis, C ;
Nelson, W ;
Doremus, RH ;
Schadler, LS .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2003, 12 (01) :34-37
[3]   Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange [J].
Basahel, Sulaiman N. ;
Ali, Tarek T. ;
Mokhtar, Mohamed ;
Narasimharao, Katabathini .
NANOSCALE RESEARCH LETTERS, 2015, 10
[4]   Influence of oxygen atmosphere on the photoluminescence properties of sol-gel derived ZrO2 thin films [J].
Berlin, I. John ;
Anitha, V. S. ;
Thomas, P. V. ;
Joy, K. .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2012, 64 (02) :289-296
[5]   Oxygen Hole States in Zirconia Lattices: Quantitative Aspects of Their Cathodoluminescence Emission [J].
Boffelli, M. ;
Zhu, W. ;
Back, M. ;
Sponchia, G. ;
Francese, T. ;
Riello, P. ;
Benedetti, A. ;
Pezzotti, G. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (42) :9828-9836
[6]   Characterization of 3D Printed Yttria-Stabilized Zirconia Parts for Use in Prostheses [J].
Buj-Corral, Irene ;
Vidal, Daniel ;
Tejo-Otero, Aitor ;
Antonio Padilla, Jose ;
Xuriguera, Elena ;
Fenollosa-Artes, Felip .
NANOMATERIALS, 2021, 11 (11)
[7]   Effects of Yb2O3 as Stabilizer and Sensitizer on the Luminescence Properties of Cubic ZrO2 Single Crystals [J].
Cheng, Zeyu ;
Ren, Hao ;
Wang, Yazhao ;
Ta, Shengdi ;
Zhang, Peng ;
Yang, Yuhua ;
Xu, Shoulei ;
Goodman, Bernard Albert ;
Deng, Wen .
CRYSTAL GROWTH & DESIGN, 2022, 22 (09) :5481-5488
[8]   Aerogel synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route [J].
Chervin, CN ;
Clapsaddle, BJ ;
Chiu, HW ;
Gash, AE ;
Satcher, JH ;
Kauzlarich, SM .
CHEMISTRY OF MATERIALS, 2005, 17 (13) :3345-3351
[9]   Cathodo-luminescence of color centers induced in sapphire and yttria-stabilized zirconia by high-energy electrons [J].
Costantini, Jean-Marc ;
Watanabe, Yasushi ;
Yasuda, Kazuhiro ;
Fasoli, Mauro .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (15)
[10]  
Cotton S. A., 1997, ANNU REP PROG CHEM A, V93, P143, DOI DOI 10.1039/IC9969300143