Projected Climate Change Effects on Global Vegetation Growth: A Machine Learning Approach

被引:4
作者
Nguyen, Kieu Anh [1 ]
Seeboonruang, Uma [2 ]
Chen, Walter [1 ]
机构
[1] Natl Taipei Univ Technol, Dept Civil Engn, Taipei 10608, Taiwan
[2] King Mongkuts Inst Technol Ladkrabang, Fac Engn, Bangkok 10520, Thailand
关键词
Global NDVI; machine learning; random forest; climate change; shared socioeconomic pathways; NDVI; TEMPERATURE;
D O I
10.3390/environments10120204
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, a machine learning model was used to investigate the potential consequences of climate change on vegetation growth. The methodology involved analyzing the historical Normalized Difference Vegetation Index (NDVI) data and future climate projections under four Shared Socioeconomic Pathways (SSPs). Data from the Global Inventory Monitoring and Modeling System (GIMMS) dataset for the period 1981-2000 were used to train the machine learning model, while CMIP6 (Coupled Model Intercomparison Project Phase 6) global climate projections from 2021-2100 were employed to predict future NDVI values under different SSPs. The study results revealed that the global mean NDVI is projected to experience a significant increase from the period 1981-2000 to the period 2021-2040. Following this, the mean NDVI slightly increases under SSP126 and SSP245 while decreasing substantially under SSP370 and SSP585. In the near-term span of 2021-2040, the average NDVI value of SSP585 slightly exceeds that of SSP245 and SSP370, suggesting a positive vegetation development in response to a more pronounced temperature increase in the near term. However, if the trajectory of SSP585 persists, the mean NDVI will commence a decline over the subsequent three periods (2041-2060, 2061-2080, and 2080-2100) with a faster speed than that of SSP370. This decline is attributed to the adverse effects of a rapid temperature rise on vegetation. Based on the examination of individual continents, it is projected that the NDVI values in Africa, South America, and Oceania will decline over time, except under the scenario SSP126 during 2081-2100. On the other hand, the NDVI values in North America and Europe are anticipated to increase, with the exception of the scenario SSP585 during 2081-2100. Additionally, Asia is expected to follow an increasing trend, except under the scenario SSP126 during 2081-2100. In the larger scope, our research findings carry substantial implications for biodiversity preservation, greenhouse gas emission reduction, and efficient environmental management. The utilization of machine learning technology holds the potential to accurately predict future changes in vegetation growth and pinpoint areas where intervention is imperative.
引用
收藏
页数:18
相关论文
共 35 条
  • [31] On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6
    Wyser, Klaus
    van Noije, Twan
    Yang, Shuting
    von Hardenberg, Jost
    O'Donnell, Declan
    Doscher, Ralf
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (08) : 3465 - 3474
  • [32] Factors Affecting Long-Term Trends in Global NDVI
    Yang, Yujie
    Wang, Shijie
    Bai, Xiaoyong
    Tan, Qiu
    Li, Qin
    Wu, Luhua
    Tian, Shiqi
    Hu, Zeyin
    Li, Chaojun
    Deng, Yuanhong
    [J]. FORESTS, 2019, 10 (05)
  • [33] Projecting Future Vegetation Change for Northeast China Using CMIP6 Model
    Yuan, Wei
    Wu, Shuang-Ye
    Hou, Shugui
    Xu, Zhiwei
    Pang, Hongxi
    Lu, Huayu
    [J]. REMOTE SENSING, 2021, 13 (17)
  • [34] A Land Cover Classification Method for High-Resolution Remote Sensing Images Based on NDVI Deep Learning Fusion Network
    Zhao, Jingzheng
    Wang, Liyuan
    Yang, Hui
    Wu, Penghai
    Wang, Biao
    Pan, Chengrong
    Wu, Yanlan
    [J]. REMOTE SENSING, 2022, 14 (21)
  • [35] Future greening of the Earth may not be as large as previously predicted
    Zhao, Qian
    Zhu, Zaichun
    Zeng, Hui
    Zhao, Weiqing
    Myneni, Ranga B.
    [J]. AGRICULTURAL AND FOREST METEOROLOGY, 2020, 292