Innovative Cucumber Phenotyping: A Smartphone-Based and Data-Labeling-Free Model

被引:2
|
作者
Nguyen, Le Quan [1 ]
Shin, Jihye [2 ]
Ryu, Sanghuyn [2 ]
Dang, L. Minh [3 ,4 ]
Park, Han Yong [5 ]
Lee, O. New [5 ]
Moon, Hyeonjoon [1 ]
机构
[1] Sejong Univ, Dept Comp Sci & Engn, Seoul 05006, South Korea
[2] Sejong Univ, Dept Artificial Intelligence, Seoul 05006, South Korea
[3] Sejong Univ, Dept Informat & Commun Engn, Seoul 05006, South Korea
[4] Sejong Univ, Convergence Engn Intelligent Drone, Seoul 05006, South Korea
[5] Sejong Univ, Dept Bioresource Engn, Seoul 05006, South Korea
基金
新加坡国家研究基金会;
关键词
plant phenotyping; cucumber; segmentation; zero-shot learning; deep learning; trait; IMAGE;
D O I
10.3390/electronics12234775
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sustaining global food security amid a growing world population demands advanced breeding methods. Phenotyping, which observes and measures physical traits, is a vital component of agricultural research. However, its labor-intensive nature has long hindered progress. In response, we present an efficient phenotyping platform tailored specifically for cucumbers, harnessing smartphone cameras for both cost-effectiveness and accessibility. We employ state-of-the-art computer vision models for zero-shot cucumber phenotyping and introduce a B-spline curve as a medial axis to enhance measurement accuracy. Our proposed method excels in predicting sample lengths, achieving an impressive mean absolute percentage error (MAPE) of 2.20%, without the need for extensive data labeling or model training.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ASSESSMENT OF BIPOLAR DISORDER USING HETEROGENEOUS DATA OF SMARTPHONE-BASED DIGITAL PHENOTYPING
    Su, Hung-Yi
    Wu, Chung-Hsien
    Liou, Cheng-Ray
    Lin, Esther Ching-Lan
    Chen, Po See
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4260 - 4264
  • [2] INPHOVIS: Interactive visual analytics for smartphone-based digital phenotyping
    Mansoor, Hamid
    Gerych, Walter
    Alajaji, Abdulaziz
    Buquicchio, Luke
    Chandrasekaran, Kavin
    Agu, Emmanuel
    Rundensteiner, Elke
    Rodriguez, Angela Incollingo
    VISUAL INFORMATICS, 2023, 7 (02) : 13 - 29
  • [3] Smartphone-Based Data Collection in Ophthalmology
    Raber, Florian Philipp
    Gerbutavicius, Rokas
    Wolf, Armin
    Kortuem, Karsten
    KLINISCHE MONATSBLATTER FUR AUGENHEILKUNDE, 2020, 237 (12) : 1420 - 1428
  • [4] Harnessing Smartphone-Based Digital Phenotyping to Enhance Behavioral and Mental Health
    Jukka-Pekka Onnela
    Scott L Rauch
    Neuropsychopharmacology, 2016, 41 : 1691 - 1696
  • [5] Smartphone-Based Visual Measurement and Portable Instrumentation for Crop Seed Phenotyping
    Ma Zhihong
    Mao Yuhan
    Gong Liang
    Liu Chengliang
    IFAC PAPERSONLINE, 2016, 49 (16): : 259 - 264
  • [6] Harnessing Smartphone-Based Digital Phenotyping to Enhance Behavioral and Mental Health
    Onnela, Jukka-Pekka
    Rauch, Scott L.
    NEUROPSYCHOPHARMACOLOGY, 2016, 41 (07) : 1691 - 1696
  • [7] Visualization of a Scale Free Network in a Smartphone-based Multimedia Big Data Environment
    Ahmad, Akhlaq
    Rahman, Md. Abdur
    Sadiq, Bilal
    Mohammed, Shady
    Basalamah, Saleh
    Wahiddin, Mohamed Ridza
    2015 1ST IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2015, : 286 - 287
  • [8] An innovative smartphone-based solution for traffic rule violation detection
    Alasmary W.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (01): : 625 - 636
  • [9] An Innovative Smartphone-based Solution for Traffic Rule Violation Detection
    Alasmary, Waleed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) : 625 - 636
  • [10] Increasing the Acceptance of Smartphone-Based Data Collection
    Wenz, Alexander
    Keusch, Florian
    PUBLIC OPINION QUARTERLY, 2023, 87 (02) : 357 - 388