Physics-guided framework of neural network for fast full-field temperature prediction of indoor environment

被引:7
|
作者
Jing, Gang [1 ]
Ning, Chenguang [2 ]
Qin, Jingwen [3 ]
Ding, Xudong [4 ]
Duan, Peiyong [5 ]
Liu, Haitao [1 ]
Sang, Huiyun [1 ]
机构
[1] Shandong Jiaotong Univ, Sch Transportat & Logist Engn, Jinan 250023, Peoples R China
[2] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250014, Peoples R China
[3] Shandong Lab Vocat & Tech Coll, Dept Elect & Automation, Jinan 250300, Peoples R China
[4] Shandong Jianzhu Univ, Sch Informat & Elect Engn, Shandong Key Lab Intelligent Bldg Technol, Jinan 250101, Peoples R China
[5] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
来源
关键词
Physics-informed machine learning; Temperature distribution; Neural network; Indoor thermal environment; Computational fluid dynamics (CFD); STRATUM VENTILATION; MODEL;
D O I
10.1016/j.jobe.2023.106054
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study explored the fast full-field temperature prediction of indoor environment, which is valuable for improving energy efficiency and indoor thermal comfort. To this end, a physicsguided framework of neural networks was proposed to fast predict the full-field temperature by integrating the numerical simulation, physical laws and sparse measured data. The proposed framework comprised three basic components: (i) a surrogate model, (ii) a discrepancy model, (iii) a recovery model. First, a physics-informed neural network-based surrogate model approximating the behavior of high-fidelity simulation model was constructed to capture the trend of the temperature evolution. Thereafter, the transfer learning-based discrepancy model minimizing the discrepancy between the observation and direct numerical simulation was constructed with limited available observation data. Last, integrating the parameters of both surrogate and discrepancy model, the recovery model was built to give the best and fast full-filed temperature prediction. The proposed approach can bridge the gap between the numerical simulation and real world. The performance was validated and the results demonstrate that the proposed method provide a better full-field temperature prediction for the indoor environment with a small number of measured data.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Physics-guided full waveform inversion using Encoder-Solver convolutional neural networks
    Goren, Matan M.
    Treister, Eran
    INVERSE PROBLEMS, 2024, 40 (12)
  • [32] Physics-guided neural network for fatigue life prediction of FCC-based multi-principal element alloys
    Ren, Jingli
    Xiao, Lu
    SCRIPTA MATERIALIA, 2024, 253
  • [33] A Physics-Guided Neural Network Dynamical Model for Droplet-Based Additive Manufacturing
    Inyang-Udoh, Uduak
    Mishra, Sandipan
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (05) : 1863 - 1875
  • [34] PhysRFANet: Physics-guided neural network for real-time prediction of thermal effect during radiofrequency ablation treatment
    Shin, Minwoo
    Seo, Minjee
    Cho, Seonaeng
    Park, Juil
    Kwon, Joon Ho
    Lee, Deukhee
    Yoon, Kyungho
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138
  • [35] A simulation physics-guided neural network for predicting semiconductor structure with few experimental data
    Kim, Qhwan
    Lee, Sunghee
    Ma, Ami
    Kim, Jaeyoon
    Noh, Hyeon-Kyun
    Chang, Kyu Baik
    Cheon, Wooyoung
    Yi, Shinwook
    Jeong, Jaehoon
    Kim, Bongseok
    Kim, Young-Seok
    Kim, Dae Sin
    SOLID-STATE ELECTRONICS, 2023, 201
  • [36] Physics-guided multistage neural network: A physically guided network for step initial values and dispersive shock wave phenomena
    Yuan, Wen-Xuan
    Guo, Rui
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [37] HOSSNet: An efficient physics-guided neural network for simulating micro-crack propagation
    Chen, Shengyu
    Feng, Shihang
    Huang, Yao
    Lei, Zhou
    Jia, Xiaowei
    Lin, Youzuo
    Rougier, Esteban
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 236
  • [38] Physics-Guided Architecture (PGA) of Neural Networks for Quantifying Uncertainty in Lake Temperature Modeling
    Daw, Arka
    Thomas, R. Quinn
    Carey, Cayelan C.
    Read, Jordan S.
    Appling, Alison P.
    Karpatne, Anuj
    PROCEEDINGS OF THE 2020 SIAM INTERNATIONAL CONFERENCE ON DATA MINING (SDM), 2020, : 532 - 540
  • [39] A feedforward control method for turntable servo system based on physics-guided neural network
    He, Yuxiang
    Chen, Songlin
    Liu, Yang
    Xie, Cheng
    Geng, Jiabao
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2024,
  • [40] Field strength prediction in indoor environment with a neural model
    Popescu, I
    Nafornita, I
    Gavriloaia, G
    Constantinou, P
    Gordan, C
    TELSIKS 2001, VOL 1 & 2, PROCEEDINGS, 2001, : 640 - 643