Linguistic representation of vowels in speech imagery EEG

被引:0
作者
Nitta, Tsuneo [1 ]
Horikawa, Junsei [1 ]
Iribe, Yurie [2 ]
Taguchi, Ryo [3 ]
Katsurada, Kouichi [4 ]
Shinohara, Shuji [5 ]
Kawai, Goh [6 ]
机构
[1] Toyohashi Univ Technol, Grad Sch Engn, Toyohashi, Japan
[2] Aichi Prefectural Univ, Grad Sch Informat Sci & Technol, Nagakute, Japan
[3] Nagoya Inst Technol, Grad Sch Informat, Nagoya, Japan
[4] Tokyo Univ Sci, Fac Sci & Technol, Noda, Japan
[5] Tokyo Denki Univ, Sch Sci & Engn, Saitama, Japan
[6] Tokyo Univ Foreign Studies, Online Learning Support Team, Tokyo, Japan
来源
FRONTIERS IN HUMAN NEUROSCIENCE | 2023年 / 17卷
关键词
EEG; speech imagery; linguistic representation; vowels; labeling syllables;
D O I
10.3389/fnhum.2023.1163578
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Speech imagery recognition from electroencephalograms (EEGs) could potentially become a strong contender among non-invasive brain-computer interfaces (BCIs). In this report, first we extract language representations as the difference of line-spectra of phones by statistically analyzing many EEG signals from the Broca area. Then we extract vowels by using iterative search from hand-labeled short-syllable data. The iterative search process consists of principal component analysis (PCA) that visualizes linguistic representation of vowels through eigen-vectors phi(m), and subspace method (SM) that searches an optimum line-spectrum for redesigning phi(m). The extracted linguistic representation of Japanese vowels /i/ /e/ /a/ /o/ /u/ shows 2 distinguished spectral peaks (P1, P2) in the upper frequency range. The 5 vowels are aligned on the P1-P2 chart. A 5-vowel recognition experiment using a data set of 5 subjects and a convolutional neural network (CNN) classifier gave a mean accuracy rate of 72.6%.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] The use of ultrasound in the study of articulatory properties of vowels in clear speech
    Song, Jae Yung
    CLINICAL LINGUISTICS & PHONETICS, 2017, 31 (05) : 351 - 374
  • [32] SPEECH SYNTHESIS USING EEG
    Krishna, Gautam
    Tran, Co
    Han, Yan
    Carnahan, Mason
    Tewfik, Ahmed H.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1235 - 1238
  • [33] Classifying motor imagery in presence of speech
    Gurkok, Hayrettin
    Poel, Mannes
    Zwiers, Job
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [34] Linguistic representation: theoretical and practical perspectives
    Pereira, Telma
    Costa, Debora
    GRAGOATA-UFF, 2012, 17 (32): : 171 - 188
  • [35] Linguistic Representation of English Vocabulary Attrition
    Yu, Zhonggen
    Heng, Chan Swee
    Abdullah, Ain Nadzimah
    PERTANIKA JOURNAL OF SOCIAL SCIENCE AND HUMANITIES, 2011, 19 (02): : 393 - 407
  • [36] Comparing Vowels in Gurindji Kriol and Katherine English: Citation Speech Data
    Jones, Caroline
    Meakins, Felicity
    Buchan, Heather
    AUSTRALIAN JOURNAL OF LINGUISTICS, 2011, 31 (03) : 305 - 326
  • [37] Tongue-Palate Contact During Selected Vowels in Normal Speech
    Gibbon, Fiona E.
    Lee, Alice
    Yuen, Ivan
    CLEFT PALATE-CRANIOFACIAL JOURNAL, 2010, 47 (04) : 405 - 412
  • [38] EEG characteristics of motor imagery during hypnosis
    Scholz, OB
    Konradt, B
    NERVENHEILKUNDE, 2005, 24 (09) : 829 - 836
  • [39] Impacts of simplifying articulation movements imagery to speech imagery BCI performance
    Guo, Zengzhi
    Chen, Fei
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [40] Speech Quality Evaluation of Synthesized Japanese Speech using EEG
    Parmonangan, Ivan Halim
    Tanaka, Hiroki
    Sakti, Sakriani
    Takamichi, Shinnosuke
    Nakamura, Satoshi
    INTERSPEECH 2019, 2019, : 1228 - 1232