Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems

被引:112
|
作者
Lamiel, Charmaine [1 ]
Hussain, Iftikhar [2 ]
Rabiee, Hesamoddin [1 ,3 ]
Ogunsakin, Olakunle Richard [4 ]
Zhang, Kaili [2 ]
机构
[1] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[2] City Univ Hong Kong, Dept Mech Engn, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
[3] Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia
[4] Univ Wyoming, Dept Chem Engn, Laramie, WY 82071 USA
关键词
Metal-organic framework; MOF; Transition metal chalcogenide; Transition metal sulfide; Transition metal selenide; Transition metal telluride; Battery; Supercapacitor; Electrocatalysis; ZEOLITIC IMIDAZOLATE FRAMEWORKS; ROOM-TEMPERATURE SYNTHESIS; LAYERED DOUBLE HYDROXIDE; IN-SITU GROWTH; POROUS CARBON; ELECTROCATALYTIC OXYGEN; MESOPOROUS CARBON; HYDROGEN STORAGE; ANODE MATERIAL; ASYMMETRIC SUPERCAPACITORS;
D O I
10.1016/j.ccr.2023.215030
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Metal-organic framework (MOF) is one of the well-investigated nanomaterials with favorable properties exhibiting high surface area and tailorable porosity. In energy storage systems, MOFs have been highly anticipated as templates to obtain the desired properties of MOF-based nanomaterials. Such products of MOF-derived porous carbon, metal/metal oxide, and metal/metal oxide@C have shown exemplary per-formance in electrochemical energy storage devices. However, the growing studies of MOF-inspired derivation into the chalcogenide group of sulfide, selenide, and telluride have not fully been explored. This review reports the development of MOFs from their initial pristine state to their highly functional-ized MOF-derived forms. Particularly, we report the current methodologies and challenges for obtaining MOF-derived transition metal chalcogenides (TMC representing S, Se, and Te). Such advantages of MOF-derived TMC are then explored in electrochemical applications including batteries (lithium-ion, sodium -ion, and potassium-ion), supercapacitors, and electrocatalysis (hydrogen evolution reaction and oxygen evolution reaction). The review concludes by addressing the challenges and future perspectives of MOF toward its commercialization in electrochemical energy storage and conversion systems.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [11] Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges
    Xu, Guiying
    Zhu, Chengyao
    Gao, Guo
    SMALL, 2022, 18 (44)
  • [12] Recent progress in metal-organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application
    Wang, Kaixi
    Hui, Kwun Nam
    Hui, Kwan San
    Peng, Shaojun
    Xu, Yuxi
    CHEMICAL SCIENCE, 2021, 12 (16) : 5737 - 5766
  • [13] Recent advances and prospects of metal-organic framework-derived transition metal sulfide nanostructures of various dimensionalities for supercapacitor applications
    Tamang, Tensangmu Lama
    Hussain, Iftikar
    Kashtoh, Hamdy
    Baek, Kwang-Hyun
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [14] Recent advances on zeolitic imidazolate -67 metal-organic framework-derived electrode materials for electrochemical supercapacitors
    Mohamed, Aya M.
    Ramadan, Mohamed
    Allam, Nageh K.
    JOURNAL OF ENERGY STORAGE, 2021, 34
  • [15] Recent progresses of metal-organic framework-based materials in electrochemical energy storage
    Jiang, Q.
    Zhang, H.
    Ren, Z.
    Ma, H.
    Xue, M.
    MATERIALS TODAY SUSTAINABILITY, 2022, 19
  • [16] Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage
    Indra, Arindam
    Song, Taeseup
    Paik, Ungyu
    ADVANCED MATERIALS, 2018, 30 (39)
  • [17] Functional metal-organic frameworks derived electrode materials for electrochemical energy storage: a review
    Basree, Arif
    Ali, Arif
    Kumari, Khusboo
    Ahmad, Musheer
    Nayak, Ganesh Chandra
    CHEMICAL COMMUNICATIONS, 2024, 60 (91) : 13292 - 13313
  • [18] Metal-Organic Framework-Derived Electrocatalysts Competent for the Conversion of Acrylonitrile to Adiponitrile
    Wang, Yi-Ching
    Yen, Jia-Hui
    Huang, Chi-Wei
    Chang, Tzu-En
    Chen, You-Liang
    Chen, Yu-Hsiu
    Lin, Chia-Yu
    Kung, Chung-Wei
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (31) : 35534 - 35544
  • [19] Recent developments in metal-organic framework-derived transition metal oxide@carbon nanostructure and carbon nanostructure for supercapacitor applications
    Muthu, Dinesh
    Dharman, Ranjith Kumar
    Muthu, S. Esakki
    Oh, Tae Hwan
    JOURNAL OF ENERGY STORAGE, 2025, 119
  • [20] Metal-organic framework composites for energy conversion and storage
    Wang, Hang
    Zhang, Na
    Li, Shumin
    Ke, Qinfei
    Li, Zhengquan
    Zhou, Min
    JOURNAL OF SEMICONDUCTORS, 2020, 41 (09)