Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems

被引:112
|
作者
Lamiel, Charmaine [1 ]
Hussain, Iftikhar [2 ]
Rabiee, Hesamoddin [1 ,3 ]
Ogunsakin, Olakunle Richard [4 ]
Zhang, Kaili [2 ]
机构
[1] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[2] City Univ Hong Kong, Dept Mech Engn, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
[3] Univ Southern Queensland, Ctr Future Mat, Springfield, Qld 4300, Australia
[4] Univ Wyoming, Dept Chem Engn, Laramie, WY 82071 USA
关键词
Metal-organic framework; MOF; Transition metal chalcogenide; Transition metal sulfide; Transition metal selenide; Transition metal telluride; Battery; Supercapacitor; Electrocatalysis; ZEOLITIC IMIDAZOLATE FRAMEWORKS; ROOM-TEMPERATURE SYNTHESIS; LAYERED DOUBLE HYDROXIDE; IN-SITU GROWTH; POROUS CARBON; ELECTROCATALYTIC OXYGEN; MESOPOROUS CARBON; HYDROGEN STORAGE; ANODE MATERIAL; ASYMMETRIC SUPERCAPACITORS;
D O I
10.1016/j.ccr.2023.215030
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Metal-organic framework (MOF) is one of the well-investigated nanomaterials with favorable properties exhibiting high surface area and tailorable porosity. In energy storage systems, MOFs have been highly anticipated as templates to obtain the desired properties of MOF-based nanomaterials. Such products of MOF-derived porous carbon, metal/metal oxide, and metal/metal oxide@C have shown exemplary per-formance in electrochemical energy storage devices. However, the growing studies of MOF-inspired derivation into the chalcogenide group of sulfide, selenide, and telluride have not fully been explored. This review reports the development of MOFs from their initial pristine state to their highly functional-ized MOF-derived forms. Particularly, we report the current methodologies and challenges for obtaining MOF-derived transition metal chalcogenides (TMC representing S, Se, and Te). Such advantages of MOF-derived TMC are then explored in electrochemical applications including batteries (lithium-ion, sodium -ion, and potassium-ion), supercapacitors, and electrocatalysis (hydrogen evolution reaction and oxygen evolution reaction). The review concludes by addressing the challenges and future perspectives of MOF toward its commercialization in electrochemical energy storage and conversion systems.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage
    Peng, Yi
    Bai, Yang
    Liu, Chunli
    Cao, Shuai
    Kong, Qingquan
    Pang, Huan
    COORDINATION CHEMISTRY REVIEWS, 2022, 466
  • [2] Recent Progress in Metal-Organic Framework-Derived Chalcogenides (MX; X = S, Se) as Electrode Materials for Supercapacitors and Catalysts in Fuel Cells
    Alnaqbi, Halima
    El-Kadri, Oussama
    Abdelkareem, Mohammad Ali
    Al-Asheh, Sameer
    ENERGIES, 2022, 15 (21)
  • [3] Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage
    Wei, Xijun
    Li, Yanhong
    Peng, Huarong
    Zhou, Ming
    Ou, Yingqing
    Yang, Yibin
    Zhang, Yunhuai
    Xiao, Peng
    CHEMICAL ENGINEERING JOURNAL, 2018, 341 : 618 - 627
  • [4] Metal-organic framework-derived materials for electrochemical energy applications
    Liang, Zibin
    Zhao, Ruo
    Qiu, Tianjie
    Zou, Ruqiang
    Xu, Qiang
    ENERGYCHEM, 2019, 1 (01)
  • [5] Metal-Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives
    Wang, Teng
    Chen, Shaoqian
    Chen, Kai-Jie
    CHEMICAL RECORD, 2023, 23 (06):
  • [6] Metal-Organic Framework-Derived Materials for Sodium Energy Storage
    Zou, Guoqiang
    Hou, Hongshuai
    Ge, Peng
    Huang, Zhaodong
    Zhao, Ganggang
    Yin, Dulin
    Ji, Xiaobo
    SMALL, 2018, 14 (03)
  • [7] Conductive metal-organic frameworks for electrochemical energy conversion and storage
    Zhu, Bingjun
    Wen, Dongsheng
    Liang, Zibin
    Zou, Ruqiang
    COORDINATION CHEMISTRY REVIEWS, 2021, 446
  • [8] Progress and Perspectives of Conducting Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion
    Li, Minggui
    Zhang, Guangxun
    Shi, Yuxin
    Zhou, Huijie
    Zhang, Yongcai
    Pang, Huan
    CHEMISTRY-SWITZERLAND, 2023, 5 (04): : 2441 - 2475
  • [9] Metal-Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage
    Sanati, Soheila
    Abazari, Reza
    Albero, Josep
    Morsali, Ali
    Garcia, Hermenegildo
    Liang, Zibin
    Zou, Ruqiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (20) : 11048 - 11067
  • [10] Roadmap of amorphous metal-organic framework for electrochemical energy conversion and storage
    Wang, Hang
    Yang, Qi
    Zheng, Nan
    Zhai, Xingwu
    Xu, Tao
    Sun, Zhixin
    Wu, Liang
    Zhou, Min
    NANO RESEARCH, 2023, 16 (03) : 4107 - 4118