On the degenerate Cauchy problem for a nonlinear variational wave system

被引:0
作者
Hu, Yanbo [1 ,2 ]
Song, Huijuan [2 ]
机构
[1] Zhejiang Univ Sci & Technology, Dept Math, Hangzhou 310023, Peoples R China
[2] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金;
关键词
Variational wave system; Degenerate hyperbolic; Cauchy problem; Classical solution; Weighted metric space; SONIC-SUPERSONIC SOLUTIONS; CONSERVATIVE SOLUTIONS; WEAK SOLUTIONS; EQUATION; UNIQUENESS; REGULARITY; EXISTENCE;
D O I
10.1007/s40840-022-01421-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a one-dimensional nonlinear wave system which arises from a variational principle modeling a type of cholesteric liquid crystals. The problem treated here is the Cauchy problem for the same wave speed case with initial data on the parabolic degenerating line. By introducing a partial hodograph transformation, we establish the local existence of smooth solutions in a weighted metric space based on the iteration method. A classical solution of the primary problem is constructed by converting the solution in the partial hodograph variables to that in the original variables.
引用
收藏
页数:26
相关论文
共 42 条
[1]   Chemically induced twist-bend nematic liquid crystals, liquid crystal dimers, and negative elastic constants [J].
Adlem, K. ;
Copic, M. ;
Luckhurst, G. R. ;
Mertelj, A. ;
Parri, O. ;
Richardson, R. M. ;
Snow, B. D. ;
Timimi, B. A. ;
Tuffin, R. P. ;
Wilkes, D. .
PHYSICAL REVIEW E, 2013, 88 (02)
[2]   Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations [J].
Ali, Giuseppe ;
Hunter, John K. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (10) :1522-1557
[3]   ORIENTATION WAVES IN A DIRECTOR FIELD WITH ROTATIONAL INERTIA [J].
Ali, Giuseppe ;
Hunter, John K. .
KINETIC AND RELATED MODELS, 2009, 2 (01) :1-37
[4]   Conservative solutions to a nonlinear variational wave equation [J].
Bressan, Alberto ;
Zheng, Yuxi .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (02) :471-497
[5]   Lipschitz Metrics for a Class of Nonlinear Wave Equations [J].
Bressan, Alberto ;
Chen, Geng .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 226 (03) :1303-1343
[6]   Generic regularity of conservative solutions to a nonlinear wave equation [J].
Bressan, Alberto ;
Chen, Geng .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (02) :335-354
[7]   Uniqueness of conservative solutions for nonlinear wave equations via characteristics [J].
Bressan, Alberto .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (01) :157-169
[8]  
Bressan A, 2016, COMMUN MATH SCI, V14, P31, DOI 10.4310/CMS.2016.v14.n1.a2
[9]   Unique Conservative Solutions to a Variational Wave Equation [J].
Bressan, Alberto ;
Chen, Geng ;
Zhang, Qingtian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :1069-1101
[10]   Uniqueness and regularity of conservative solution to a wave system modeling nematic liquid crystal [J].
Cai, Hong ;
Chen, Geng ;
Du, Yi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 :185-220