Design of Organic Radical Cations as Potent Hydrogen-Atom Transfer Catalysts for C-H Functionalization

被引:11
作者
Matsumoto, Akira [1 ,2 ]
Maruoka, Keiji [1 ,3 ]
机构
[1] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo, Kyoto 6068501, Japan
[2] Kanazawa Univ, Inst Med, Fac Pharmaceut Sci, Kakuma Machi, Kanazawa 9201192, Japan
[3] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
基金
日本学术振兴会;
关键词
C-H Functionalization; Hydrogen-atom transfer; Photoredox catalysis; Polar effect; Radical cation; SELECTIVE FUNCTIONALIZATION; BOND FUNCTIONALIZATION; SYNTHETIC APPLICATIONS; PHOTOREDOX CATALYSIS; C(SP(3))-H BONDS; GENERATION; ACTIVATION; ALKYLATION; AMINES; PHOTOCATALYSIS;
D O I
10.1002/ajoc.202300580
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Hydrogen-atom transfer (HAT) catalysis offers an atom- and step-economical approach to the direct functionalization of aliphatic C-H bonds. While the structure of HAT catalysts largely affects the reactivity and selectivity in the step where the C-H bond is cleaved, the choice of viable catalysts for HAT from strong C-H bonds is limited. The recent development of organic HAT catalysts based on the flexibly modifiable molecular platform has enabled fine-tuning of the steric and electronic properties of these catalysts, thus greatly expanding their structural diversity. This review focuses on the design of HAT catalysts with cationic moieties as common structural motifs and their application to the selective manipulation of the C-H bonds of challenging substrates, including unactivated hydrocarbons. Hydrogen-atom transfer (HAT) catalysis enables the direct functionalization of C-H bonds in aliphatic compounds with high atom and step economy. This review highlights recently developed HAT catalysts with cationic moieties as common structural motifs, and describes the importance of catalyst design for controlling the reactivity and selectivity in the HAT process.image
引用
收藏
页数:15
相关论文
共 126 条
[1]   Selectfluor® Radical Dication (TEDA2+.) - A Versatile Species in Modern Synthetic Organic Chemistry [J].
Aguilar Troyano, Francisco Jose ;
Merkens, Kay ;
Gomez-Suarez, Adrian .
ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2020, 9 (07) :992-1007
[2]   PROTON AFFINITIES AND IONIZATION ENERGIES OF BICYCLIC AMINES AND DIAMINES - THE EFFECTS OF RING STRAIN AND OF 3-ELECTRON SIGMA-BONDING [J].
ALDER, RW ;
ARROWSMITH, RJ ;
CASSON, A ;
SESSIONS, RB ;
HEILBRONNER, E ;
KOVAC, B ;
HUBER, H ;
TAAGEPERA, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1981, 103 (20) :6137-6142
[3]   Recent Uses of Photogenerated Oxygen-Centered Radicals in Intermolecular C-O Bond Formation [J].
Banoun, Camille ;
Magnier, Emmanuel ;
Dagousset, Guillaume .
SYNLETT, 2024, 35 (03) :268-278
[4]   Synthetic Applications of Photocatalyzed Halogen-Radical Mediated Hydrogen Atom Transfer for C-H Bond Functionalization [J].
Bonciolini, Stefano ;
Noel, Timothy ;
Capaldo, Luca .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2022, 2022 (34)
[5]   Brønsted acid-enhanced direct hydrogen atom transfer photocatalysis for selective functionalization of unactivated C(sp3)-H bonds [J].
Cao, Hui ;
Kong, Degong ;
Yang, Li-Cheng ;
Chanmungkalakul, Supphachok ;
Liu, Tao ;
Piper, Jared L. ;
Peng, Zhihui ;
Gao, Linlin ;
Liu, Xiaogang ;
Hong, Xin ;
Wu, Jie .
NATURE SYNTHESIS, 2022, 1 (10) :794-803
[6]   Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis [J].
Cao, Hui ;
Tang, Xinxin ;
Tang, Haidi ;
Yuan, Ye ;
Wu, Jie .
CHEM CATALYSIS, 2021, 1 (03) :523-598
[7]   Direct, enantioselective α-alkylation of aldehydes using simple olefins [J].
Capacci, Andrew G. ;
Malinowski, Justin T. ;
McAlpine, Neil J. ;
Kuhne, Jerome ;
MacMillan, David W. C. .
NATURE CHEMISTRY, 2017, 9 (11) :1073-1077
[8]   Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration [J].
Capaldo, Luca ;
Ravelli, Davide ;
Fagnoni, Maurizio .
CHEMICAL REVIEWS, 2022, 122 (02) :1875-1924
[9]   Photocatalytic hydrogen atom transfer: the philosopher's stone for late-stage functionalization? [J].
Capaldo, Luca ;
Quadri, Lorenzo Lafayette ;
Ravelli, Davide .
GREEN CHEMISTRY, 2020, 22 (11) :3376-3396
[10]   Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis [J].
Capaldo, Luca ;
Ravelli, Davide .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2017, 2017 (15) :2056-2071