SHELL EXTREMAL EIGENVALUES OF TRIDIAGONAL TOEPLITZ MATRICES

被引:0
|
作者
Chorianopoulos, Christos [1 ]
机构
[1] Univ West Attica, Dept Elect & Elect Engn, Egaleo, Greece
来源
ELECTRONIC JOURNAL OF LINEAR ALGEBRA | 2023年 / 39卷
关键词
Shell; Cubic curve; Toeplitz matrix; Extremal eigenvalues; Non-normal matrix; RANK NUMERICAL RANGE; ENVELOPE; GEOMETRY; SPECTRUM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The shell of a complex tridiagonal Toeplitz matrix is studied. Closed formulas for all quantities involved in its equation are presented. Necessary , sufficient conditions for a Toeplitz tridiagonal matrix to have shell extremal eigenvalues are given. Several, recently introduced, geometric quantities related to the shell are studied as measures of non-normality of these extremal eigenvalues of such matrices. These quantities are also proposed as measures of non-normality for the matrix itself.
引用
收藏
页码:572 / 590
页数:19
相关论文
共 50 条
  • [31] Infinite random matrix theory, tridiagonal bordered Toeplitz matrices, and the moment problem
    Dubbs, Alexander
    Edelman, Alan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 188 - 201
  • [32] Some acceleration techniques for calculating the eigenvalues of normal Toeplitz matrices
    A. K. Abdikalykov
    Kh. D. Ikramov
    V. N. Chugunov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 1761 - 1764
  • [33] Some acceleration techniques for calculating the eigenvalues of normal Toeplitz matrices
    Abdikalykov, A. K.
    Ikramov, Kh. D.
    Chugunov, V. N.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (12) : 1761 - 1764
  • [34] Recursive and Combinational Formulas for Permanents of General k-tridiagonal Toeplitz Matrices
    Kucuk, Ahmet Zahid
    Ozen, Mehmet
    Ince, Halit
    FILOMAT, 2019, 33 (01) : 307 - 317
  • [35] Higher order fluctuations of extremal eigenvalues of sparse random matrices
    Lee, Jaehun
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2694 - 2735
  • [36] Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols
    Bogoya, J. M.
    Boettcher, A.
    Grudsky, S. M.
    Maximenko, E. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 1308 - 1334
  • [37] Computing eigenvalues of semi-infinite quasi-Toeplitz matrices
    D. A. Bini
    B. Iannazzo
    B. Meini
    J. Meng
    L. Robol
    Numerical Algorithms, 2023, 92 : 89 - 118
  • [38] Eigenvector sensitivity under general and structured perturbations of tridiagonal Toeplitz-type matrices
    Noschese, Silvia
    Reichel, Lothar
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2019, 26 (03)
  • [39] Computing eigenvalues of semi-infinite quasi-Toeplitz matrices
    Bini, D. A.
    Iannazzo, B.
    Meini, B.
    Meng, J.
    Robol, L.
    NUMERICAL ALGORITHMS, 2023, 92 (01) : 89 - 118
  • [40] Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form?
    Ekstroem, Sven-Erik
    Garoni, Carlo
    Serra-Capizzano, Stefano
    EXPERIMENTAL MATHEMATICS, 2018, 27 (04) : 478 - 487