AN EFFECT OF DECAY RATES: SUPERCRITICAL DAMPING AND A VISCOELASTIC TERM

被引:0
作者
Li, Fang [1 ]
Li, Xiaolei [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
来源
EVOLUTION EQUATIONS AND CONTROL THEORY | 2024年 / 13卷 / 01期
关键词
Asymptotic stability; viscoelastic hyperbolic equation; supercritical damping; decay rates; multiplier method; WAVE-EQUATION; VARIABLE-EXPONENT; BLOW-UP; ASYMPTOTIC STABILITY; ENERGY DECAY; T)-LAPLACIAN; EXISTENCE; P(X;
D O I
10.3934/eect.2023038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We consider the following viscoelastic equation involving variable exponent nonlinearities: Z t utt - & UDelta;u + g(t - s)& UDelta;u(s)ds + a|ut |m(x)-2ut = |u|q(x)-2u. 0 Due to the failure of the embedding inequality for the supercritical case, the well-known technique is unsuccessful in our problem. To do this, our strategy is to give a priori estimate for the weighted integral f & omega; (2 + t)1-m(x)|u|m(x)dx and then apply modified multiplier method to prove that the energy functional decays logarithmically to zero when the relaxation function g decays exponentially to zero. Meanwhile, for more general cases, we also give the explicit dependence of decay rate on both the exponent m(x) and the relaxation function g. This differs from some results of [21] where the energy functional decays exponentially to zero when the relaxation function g decays exponentially to zero.
引用
收藏
页码:116 / 127
页数:12
相关论文
共 27 条
  • [1] Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain
    Aassila, M
    Cavalcanti, MM
    Soriano, JA
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) : 1581 - 1602
  • [2] Regularity results for stationary electro-rheological fluids
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) : 213 - 259
  • [3] Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities
    Al-Gharabli, Mohammad M.
    Al-Mahdi, Adel M.
    Kafini, Mohammad
    [J]. AIMS MATHEMATICS, 2021, 6 (09): : 10105 - 10129
  • [4] Energy Decay Estimates of a Timoshenko System with Two Nonlinear Variable Exponent Damping Terms
    Al-Mahdi, Adel M.
    Al-Gharabli, Mohammad M.
    [J]. MATHEMATICS, 2023, 11 (03)
  • [5] WAVE EQUATION WITH p(x,t)-LAPLACIAN AND DAMPING TERM: EXISTENCE AND BLOW-UP
    Antontsev, Stanislav
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (04): : 503 - 525
  • [6] Wave equation with p(x, t)-Laplacian and damping term: Blow-up of solutions
    Antontsev, Stanislav
    [J]. COMPTES RENDUS MECANIQUE, 2011, 339 (12): : 751 - 755
  • [7] Cavalcanti M., 2002, DIFFERENTIAL INTEGRA, V15, P731
  • [8] General decay rate estimates for viscoelastic dissipative systems
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Martinez, P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) : 177 - 193
  • [9] Frictional versus viscoelastic damping in a semilinear wave equation
    Cavalcanti, MM
    Oquendo, HP
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) : 1310 - 1324
  • [10] DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297