Solving elastic wave equations in 2D transversely isotropic media by a weighted Runge-Kutta discontinuous Galerkin method

被引:5
作者
He, Xi-Jun [1 ]
Li, Jing-Shuang [2 ]
Huang, Xue-Yuan [1 ]
Zhou, Yan-Jie [1 ]
机构
[1] Beijing Technol & Business Univ BTBU, Sch Math & Stat, Beijing 100048, Peoples R China
[2] China Univ Min & Technol Beijing, Sch Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Discontinuous Galerkin method; Anisotropy; Transversely isotropic; Modeling; FINITE-ELEMENT-METHOD; ANISOTROPIC MEDIA; TENSORIAL ELASTODYNAMICS; UNSTRUCTURED MESHES; FIELD SIMULATION; DIFFERENCE; PROPAGATION; SURFACE; STABILITY; VELOCITY;
D O I
10.1016/j.petsci.2022.10.007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate wave propagation simulation in anisotropic media is important for forward modeling, migration and inversion. In this study, the weighted Runge-Kutta discontinuous Galerkin (RKDG) method is extended to solve the elastic wave equations in 2D transversely isotropic media. The spatial discretization is based on the numerical flux discontinuous Galerkin scheme. An explicit weighted two-step iterative Runge-Kutta method is used as time-stepping algorithm. The weighted RKDG method has good flexibility and applicability of dealing with undulating geometries and boundary conditions. To verify the correctness and effectiveness of this method, several numerical examples are presented for elastic wave propagations in vertical transversely isotropic and tilted transversely isotropic media. The results show that the weighted RKDG method is promising for solving wave propagation problems in complex anisotropic medium. (c) 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:827 / 839
页数:13
相关论文
共 57 条
  • [1] Aki K., 2002, QUANTITATIVE SEISMOL
  • [2] Carcione JM, 2007, HDB GEOPHYS EXPLOR I, V38, P1
  • [3] Anisotropic poroelasticity and wave-induced fluid flow: harmonic finite-element simulations
    Carcione, J. M.
    Santos, J. E.
    Picotti, S.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 186 (03) : 1245 - 1254
  • [4] Hydro-morphodynamics 2D modelling using a discontinuous Galerkin discretisation
    Clare, Mariana C. A.
    Percival, James R.
    Angeloudis, Athanasios
    Cotter, Colin J.
    Piggott, Matthew D.
    [J]. COMPUTERS & GEOSCIENCES, 2021, 146
  • [5] Runge-Kutta discontinuous Galerkin methods for convection-dominated problems
    Cockburn, Bernardo
    Shu, Chi-Wang
    [J]. Journal of Scientific Computing, 2001, 16 (03) : 173 - 261
  • [6] TVB RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .2. GENERAL FRAMEWORK
    COCKBURN, B
    SHU, CW
    [J]. MATHEMATICS OF COMPUTATION, 1989, 52 (186) : 411 - 435
  • [7] Elastic wave propagation in fractured media using the discontinuous Galerkin method
    De Basabe, Jonas D.
    Sen, Mrinal K.
    Wheeler, Mary F.
    [J]. GEOPHYSICS, 2016, 81 (04) : T163 - T174
  • [8] The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion
    De Basabe, Jonas D.
    Sen, Mrinal K.
    Wheeler, Mary F.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2008, 175 (01) : 83 - 93
  • [9] de la Puente J, 2008, SEISMIC WAVE SIMULAT
  • [10] An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes -: IV.: Anisotropy
    de la Puente, Josep
    Kaeser, Martin
    Dumbser, Michael
    Igel, Heiner
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 169 (03) : 1210 - 1228