Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy

被引:13
作者
Du, Yan [1 ]
Tang, Qian [1 ]
Fu, Shaoke [1 ]
Shan, Chuncai [1 ]
Zeng, Qixuan [1 ]
Guo, Hengyu [1 ]
Hu, Chenguo [1 ]
机构
[1] Chongqing Univ, Dept Appl Phys, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
triboelectric nanogenerator; chain-flip plate; wave energy; blue energy;
D O I
10.1007/s12274-023-5733-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Triboelectric nanogenerator (TENG) is a new cost-effective blue energy harvesting technology for its great performance in low frequency. However, many related energy harvesters operate on water surface, ignoring the ocean's depth. Herein, a chain-flipped plate TENG (CFP-TENG), consisting of longitudinally arranged repeating units, is proposed to collect wave energy. The chain structure design allows the surface wave energy to act effectively on the underwater generator. The maximum output power per unit ocean area reaches 1.5 W center dot m(-2) at a loading resistance of 30 M?. Optimization of device parameters and application demonstrations are explored. Compared with previous works, the utilization rate of wave energy has been significantly improved. This work not only provides a new method to optimize the output of TENG but also makes a crucial step in promoting practical applications of TENG in renewable blue energy.
引用
收藏
页码:11900 / 11906
页数:7
相关论文
共 47 条
  • [1] Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy
    Ahmed, Abdelsalam
    Saadatnia, Zia
    Hassan, Islam
    Zi, Yunlong
    Xi, Yi
    He, Xu
    Zu, Jean
    Wang, Zhong Lin
    [J]. ADVANCED ENERGY MATERIALS, 2017, 7 (07)
  • [2] Charge Pumping Strategy for Rotation and Sliding Type Triboelectric Nanogenerators
    Bai, Yu
    Xu, Liang
    Lin, Shiquan
    Luo, Jianjun
    Qin, Huaifang
    Han, Kai
    Wang, Zhong Lin
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (21)
  • [3] Triboelectric nanogenerator based on degradable materials
    Chao, Shengyu
    Ouyang, Han
    Jiang, Dongjie
    Fan, Yubo
    Li, Zhou
    [J]. ECOMAT, 2021, 3 (01)
  • [4] Robust Triboelectric Nanogenerator Achieved by Centrifugal Force Induced Automatic Working Mode Transition
    Chen, Jie
    Guo, Hengyu
    Hu, Chenguo
    Wang, Zhong Lin
    [J]. ADVANCED ENERGY MATERIALS, 2020, 10 (23)
  • [5] High performance temperature difference triboelectric nanogenerator
    Cheng, Bolang
    Xu, Qi
    Ding, Yaqin
    Bai, Suo
    Jia, Xiaofeng
    Yu, Yangdianchen
    Wen, Juan
    Qin, Yong
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [6] A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed
    Cheng, Li
    Xu, Qi
    Zheng, Youbin
    Jia, Xiaofeng
    Qin, Yong
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [7] Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy
    Cheng, Ping
    Liu, Yina
    Wen, Zhen
    Shao, Huiyun
    Wei, Aimin
    Xie, Xinkai
    Chen, Chen
    Yang, Yanqin
    Peng, Mingfa
    Zhuo, Qiqi
    Sun, Xuhui
    [J]. NANO ENERGY, 2018, 54 : 156 - 162
  • [8] A Novel Design Based on Mechanical Time-Delay Switch and Charge Space Accumulation for High Output Performance Direct-Current Triboelectric Nanogenerator
    Du, Yan
    Fu, Shaoke
    Shan, Chuncai
    Wu, Huiyuan
    He, Wencong
    Wang, Jian
    Guo, Hengyu
    Li, Gui
    Wang, Zhao
    Hu, Chenguo
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (48)
  • [9] Harvesting ambient mechanical energy by multiple mode triboelectric nanogenerator with charge excitation for self-powered freight train monitoring
    Du, Yan
    Tang, Qian
    He, Wencong
    Liu, Wenlin
    Wang, Zhao
    Wu, Huiyuan
    Li, Gui
    Guo, Hengyu
    Li, Zhongjie
    Peng, Yan
    Hu, Chenguo
    [J]. NANO ENERGY, 2021, 90
  • [10] Flexible triboelectric generator!
    Fan, Feng-Ru
    Tian, Zhong-Qun
    Wang, Zhong Lin
    [J]. NANO ENERGY, 2012, 1 (02) : 328 - 334