Engineering of the Crystalline Lattice of Hard Carbon Anodes Toward Practical Potassium-Ion Batteries

被引:101
|
作者
Zhong, Lei [1 ]
Zhang, Wenli [1 ,2 ]
Sun, Shirong [1 ]
Zhao, Lei [1 ]
Jian, Wenbin [1 ]
He, Xing [1 ]
Xing, Zhenyu [3 ]
Shi, Zixiong [4 ]
Chen, Yanan [5 ]
Alshareef, Husam N. N. [4 ]
Qiu, Xueqing [1 ]
机构
[1] Guangdong Univ Technol GDUT, Sch Chem Engn & Light Ind, Guangdong Prov Key Lab Plant Resources Biorefinery, 100 Waihuan Xi Rd, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol GDUT, Sch Adv Mfg, Jieyang 522000, Peoples R China
[3] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
[4] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Mat Sci & Engn, Thuwal 239556900, Saudi Arabia
[5] Tianjin Univ, Sch Mat Sci & Engn, Key Lab Adv Ceram & Machining Technol, Minist Educ,Tianjin Key Lab Composite & Funct Mat, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
graphitic nanodomains; hard carbon; lignin; potassium-ion batteries; potential platforms; LIGNIN; STORAGE; INTERCALATION; ULTRAVIOLET; FILMS;
D O I
10.1002/adfm.202211872
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hard carbons have attracted increased interest as an alternative of graphite for the anodes of potassium-ion batteries (PIBs). However, the practical applications of hard carbon anodes are hampered by their low capacities, high potential platforms, and large potential hysteresis. Hard carbons coupled with graphitic nanodomains can achieve stable potassium-ion storage behaviors with low potential platforms and low potential hysteresis. Herein, the crystalline lattice in hard carbon anodes is tuned by incorporating graphene oxide in renewable lignin precursors. The modified hard carbon (i.e., QLGC) anodes show graphitized nanodomains in the carbon matrix with an expanded interlayer spacing (0.42 nm) in the amorphous regions, which results in a stable potassium-ion (de)intercalation behavior. Thus, the QLGC anodes exhibit a high capacity of 164 mAh g(-1) with low potential hysteresis in the low potential platform region. Moreover, the QLGC anode delivered a highly stabilized capacity of 283 mAh g(-1) at 50 mA g(-1), a high-rate capability, and stable cycling performance. Furthermore, the charge storage mechanisms of QLGC anode are elucidated by electro-kinetic analysis and ex/in situ physicochemical characterizations. This study opens a new avenue for designing hard carbon anodes with engineered crystalline lattices toward practical PIBs.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Extremely stable antimony-carbon composite anodes for potassium-ion batteries
    Zheng, Jing
    Yang, Yong
    Fan, Xiulin
    Ji, Guangbin
    Ji, Xiao
    Wang, Haiyang
    Hou, Singyuk
    Zachariah, Michael R.
    Wang, Chunsheng
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (02) : 615 - 623
  • [22] SYNTHESIS OF PITCH-DERIVED CARBON ANODES FOR HIGHPERFORMANCE POTASSIUM-ION BATTERIES
    Jiang, Ming-chi
    Sun, Ning
    Yu, Jia-xu
    Wang, Ti-zheng
    Somoro, Razium Ali
    Jia, Meng-qiu
    Xu, Bin
    CARBON, 2025, 234
  • [23] Recent Advances in Stability of Carbon-Based Anodes for Potassium-Ion Batteries
    Wang, Jiali
    Wang, Huwei
    Zang, Xiaobei
    Zhai, Dengyun
    Kang, Feiyu
    BATTERIES & SUPERCAPS, 2021, 4 (04) : 554 - 570
  • [24] Designing carbon anodes for advanced potassium-ion batteries: Materials, modifications, and mechanisms
    Wang, Xuehui
    Wang, Huanlei
    ADVANCED POWDER MATERIALS, 2022, 1 (04):
  • [25] Tin-phosphorus anodes for potassium-ion batteries
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2017, 95 (10) : 11 - 11
  • [26] Nanostructured metal selenides as anodes for potassium-ion batteries
    Yang, Guowei
    Wu, Yuhan
    Fu, Qun
    Zhao, Huaping
    Lei, Yong
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (09) : 2087 - 2112
  • [27] Concave Engineering of Hollow Carbon Spheres toward Advanced Anode Material for Sodium/Potassium-Ion Batteries
    Chen, Yuxiang
    Shi, Xiaodong
    Lu, Bingan
    Zhou, Jiang
    ADVANCED ENERGY MATERIALS, 2022, 12 (46)
  • [28] Coal-based carbon anodes for high-performance potassium-ion batteries
    Xiao, Nan
    Zhang, Xiaoyu
    Liu, Chang
    Wang, Yuwei
    Li, Hongqiang
    Qiu, Jieshan
    CARBON, 2019, 147 : 574 - 581
  • [29] MoSe2/N-Doped Carbon as Anodes for Potassium-Ion Batteries
    Ge, JunMin
    Fan, Ling
    Wang, Jue
    Zhang, Qingfeng
    Liu, Zhaomeng
    Zhang, Erjin
    Liu, Qian
    Yu, Xinzhi
    Lu, Bingan
    ADVANCED ENERGY MATERIALS, 2018, 8 (29)
  • [30] Emerging carbon-based flexible anodes for potassium-ion batteries: Progress and opportunities
    Li, Wenbin
    Yang, Zihao
    Zuo, Jiaxuan
    Wang, Jingjing
    Li, Xifei
    FRONTIERS IN CHEMISTRY, 2022, 10