Multi-Vehicle Trajectory Tracking towards Digital Twin Intersections for Internet of Vehicles

被引:15
作者
Ji, Zhanhao [1 ]
Shen, Guojiang [1 ]
Wang, Juntao [1 ]
Collotta, Mario [2 ]
Liu, Zhi [1 ]
Kong, Xiangjie [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Peoples R China
[2] Kore Univ Enna, Fac Engn & Architecture, I-94100 Enna, Italy
基金
中国国家自然科学基金;
关键词
digital twin intersections; internet of vehicles; multi-vehicle tracking; spatial-temporal interaction; MULTITARGET TRACKING; MODEL;
D O I
10.3390/electronics12020275
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Digital Twin (DT) provides a novel idea for Intelligent Transportation Systems (ITS), while Internet of Vehicles (IoV) provides numerous positioning data of vehicles. However, complex interactions between vehicles as well as offset and loss of measurements can lead to tracking errors of DT trajectories. In this paper, we propose a multi-vehicle trajectory tracking framework towards DT intersections (MVT2DTI). Firstly, the positioning data is unified to the same coordinate system and associated with the tracked trajectories via matching. Secondly, a spatial-temporal tracker (STT) utilizes long short-term memory network (LSTM) and graph attention network (GAT) to extract spatial-temporal features for state prediction. Then, the distance matrix is computed as a proposed tracking loss that feeds tracking errors back to the tracker. Through the iteration of association and prediction, the unlabeled coordinates are connected into the DT trajectories. Finally, four datasets are generated to validate the effectiveness and efficiency of the framework.
引用
收藏
页数:19
相关论文
共 40 条
[1]  
Babaee M, 2018, IEEE IMAGE PROC, P2715, DOI 10.1109/ICIP.2018.8451140
[2]   Tracking Multiple Persons Based on a Variational Bayesian Model [J].
Ban, Yutong ;
Ba, Sileye ;
Alameda-Pineda, Xavier ;
Horaud, Radu .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :52-67
[3]   Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics [J].
Bernardin, Keni ;
Stiefelhagen, Rainer .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2008, 2008 (1)
[4]   Robust Tracking-by-Detection using a Detector Confidence Particle Filter [J].
Breitenstein, Michael D. ;
Reichlin, Fabian ;
Leibe, Bastian ;
Koller-Meier, Esther ;
Van Gool, Luc .
2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, :1515-1522
[5]   Multi-target Tracking by Lagrangian Relaxation to Min-Cost Network Flow [J].
Butt, Asad A. ;
Collins, Robert T. .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :1846-1853
[6]   Multi attention module for visual tracking [J].
Chen, Boyu ;
Li, Peixia ;
Sun, Chong ;
Wang, Dong ;
Yang, Gang ;
Lu, Huchuan .
PATTERN RECOGNITION, 2019, 87 :80-93
[7]   Near-Online Multi-target Tracking with Aggregated Local Flow Descriptor [J].
Choi, Wongun .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :3029-3037
[8]   SOCIAL FORCE MODEL FOR PEDESTRIAN DYNAMICS [J].
HELBING, D ;
MOLNAR, P .
PHYSICAL REVIEW E, 1995, 51 (05) :4282-4286
[9]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[10]   STGAT: Modeling Spatial-Temporal Interactions for Human Trajectory Prediction [J].
Huang, Yingfan ;
Bi, HuiKun ;
Li, Zhaoxin ;
Mao, Tianlu ;
Wang, Zhaoqi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6281-6290