Persistence of multi-dimensional degenerate hyperbolic lower dimensional invariant tori in reversible systems ?

被引:4
作者
Yang, Xiaomei [1 ]
Xu, Junxiang [2 ]
机构
[1] Jinling Inst Technol, Coll Sci, Nanjing 211169, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Reversible system; KAM iteration; Degenerate equilibrium point; Lower dimensional invariant tori; RESPONSE SOLUTIONS;
D O I
10.1016/j.jde.2022.11.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the persistence of multi-dimensional degenerate hyperbolic lower dimensional in-variant tori with prescribed frequencies in reversible systems. The proof is based on some KAM techniques and the topological degree theory. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:229 / 253
页数:25
相关论文
共 30 条
[1]  
[Anonymous], 2001, Proceedings of Symposia in Pure Mathematics
[2]  
[Anonymous], 1990, J. Sov. Math, DOI DOI 10.1007/BF01094996
[3]  
[Anonymous], J DYNAM DIFFERENTIAL
[4]  
Deimling K., 1985, Nonlinear Functional Analysis, DOI [10.1007/978-3-662-00547-7, DOI 10.1007/978-3-662-00547-7]
[5]   ON THE NUMBER OF SOLUTIONS TO POLYNOMIAL SYSTEMS OF EQUATIONS [J].
GARCIA, CB ;
LI, TY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (04) :540-546
[6]   Degenerate lower-dimensional tori under the Bryuno condition [J].
Gentile, Guido .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 :427-457
[7]   CONSERVATION OF HYPERBOLIC INVARIANT TORI FOR HAMILTONIAN SYSTEMS [J].
GRAFF, SM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (01) :1-69
[8]   Parabolic invariant tori in quasi-periodically forced skew-product maps [J].
Guan, Xinyu ;
Si, Jianguo ;
Si, Wen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 277 :234-274
[9]   Degenerate lower-dimensional tori in Hamiltonian systems [J].
Han, Yuecai ;
Li, Yong ;
Yi, Yingfei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (02) :670-691
[10]   Completely degenerate lower-dimensional invariant tori for Hamiltonian system [J].
Hu, Shengqing ;
Liu, Bin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (11) :7459-7480