Inequalities Involving Berezin Norm and Berezin Number

被引:28
作者
Bhunia, Pintu [1 ]
Paul, Kallol [1 ]
Sen, Anirban [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
关键词
Berezin norm; Berezin number; Reproducing kernel Hilbert space; OPERATORS; SYMBOL;
D O I
10.1007/s11785-022-01305-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain new inequalities involving Berezin norm and Berezin number of bounded linear operators defined on a reproducing kernel Hilbert space H. Among many inequalities obtained here, it is shown that if A is a positive bounded linear operator on H, then ||A||(ber) = ber(A), where ||A||(ber) and ber(A) are the Berezin norm and Berezin number of A, respectively. In contrast to the numerical radius, this equality does not hold for selfadjoint operators, which highlights the necessity of studying Berezin number inequalities independently.
引用
收藏
页数:15
相关论文
共 37 条
[1]   SOME EXTENSIONS OF BEREZIN NUMBER INEQUALITIES ON OPERATORS [J].
Bakherad, Mojtaba ;
Hajmohamadi, Monire ;
Lashkaripour, Rahmatollah ;
Sahoo, Satyajit .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) :1941-1951
[2]   New estimations for the Berezin number inequality [J].
Bakherad, Mojtaba ;
Yamanci, Ulas .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[3]   Berezin number inequalities for operators [J].
Bakherad, Mojtaba ;
Garayev, Mubariz T. .
CONCRETE OPERATORS, 2019, 6 (01) :33-43
[4]  
Berezin F. A., 1972, Math. USSR-Izv., V6, P1117
[5]  
Berezin FA., 1974, Math. USSR Izvest, V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]
[6]   Development of inequalities and characterization of equality conditions for the numerical radius [J].
Bhunia, Pintu ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 :306-315
[7]   Proper Improvement of Well-Known Numerical Radius Inequalities and Their Applications [J].
Bhunia, Pintu ;
Paul, Kallol .
RESULTS IN MATHEMATICS, 2021, 76 (04)
[8]   Furtherance of numerical radius inequalities of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
ARCHIV DER MATHEMATIK, 2021, 117 (05) :537-546
[9]   New upper bounds for the numerical radius of Hilbert space operators [J].
Bhunia, Pintu ;
Paul, Kallol .
BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167
[10]  
Cortes C., 2009, NIPS