Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model

被引:7
作者
Dashbold, Batmyagmar [1 ]
Bryson, L. Sebastian [2 ]
Crawford, Matthew M. [3 ]
机构
[1] Stantec Inc, 3052 Beaumont Ctr Circle, Lexington, KY 40513 USA
[2] Univ Kentucky, Dept Civil Engn, 161 Raymond Bldg, Lexington, KY 40506 USA
[3] Univ Kentucky, Kentucky Geol Survey, 228 Min & Mineral Resources Bldg, Lexington, KY 40506 USA
关键词
Satellite data; Remote sensing; Limit equilibrium; Machine learning; Geographic information system (GIS); Digital elevation map (DEM); Landslides;
D O I
10.1007/s11069-022-05671-7
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Landslide susceptibility mapping and landslide hazard mapping are approaches used to assess the potential for landslides and predict the occurrence of landslides, respectively. We evaluated and tested a limit equilibrium approach to produce a local-scale, multi-temporal geographic information system-based landslide hazard map that utilized satellite soil moisture data, soil strength and hydrologic data, and a high-resolution (1.5 m) LiDAR-derived digital elevation map. The final multi-temporal landslide hazard map was validated temporally and spatially using four study sites at known landslide locations and failure dates. The resulting product correctly indicated low factor of safety values at the study sites on the dates the landslide occurred. Also, we produced a regional-scale landslide susceptibility map using a logistic regression machine learning model using 15 variables derived from the geomorphology, soil properties, and land-cover data. The area under the curve of the receiver operating characteristic curve was used for the accuracy of the model, which yielded a success rate of 0.84. We show that using publicly available data, a multi-temporal landslide hazard map can be created that will produce a close-to-real-time landslide predictive map. The landslide hazard map provides an understanding into the evolution of landslide development temporally and spatially, whereas the landslide susceptibility map indicates the probability of landslides occurring at specific locations. When used in tandem, the two mapping models are complementary to each other. Specifically, the landslide susceptibility mapping identifies the area most susceptible to landslides, while the landslide hazard mapping predicts when landslide may occur within the identified susceptible area.
引用
收藏
页码:235 / 265
页数:31
相关论文
共 44 条
[1]   Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling [J].
Alvioli, Massimiliano ;
Marchesini, Ivan ;
Reichenbach, Paola ;
Rossi, Mauro ;
Ardizzone, Francesca ;
Fiorucci, Federica ;
Guzzetti, Fausto .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (11) :3975-3991
[2]   Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches [J].
Binh Thai Pham ;
Prakash, Indra ;
Singh, Sushant K. ;
Shirzadi, Ataollah ;
Shahabi, Himan ;
Thi-Thu-Trang Tran ;
Dieu Tien Buig .
CATENA, 2019, 175 :203-218
[3]   Monitoring soil-water and displacement conditions leading to landslide occurrence in partially saturated clays [J].
Bittelli, Marco ;
Valentino, Roberto ;
Salvatorelli, Fiorenzo ;
Pisa, Paola Rossi .
GEOMORPHOLOGY, 2012, 173 :161-173
[4]   Field variability of landslide model parameters [J].
Burton, A ;
Arkell, TJ ;
Bathurst, JC .
ENVIRONMENTAL GEOLOGY, 1998, 35 (2-3) :100-114
[5]   GIS TECHNIQUES AND STATISTICAL-MODELS IN EVALUATING LANDSLIDE HAZARD [J].
CARRARA, A ;
CARDINALI, M ;
DETTI, R ;
GUZZETTI, F ;
PASQUI, V ;
REICHENBACH, P .
EARTH SURFACE PROCESSES AND LANDFORMS, 1991, 16 (05) :427-445
[6]   Assessment of the SMAP Passive Soil Moisture Product [J].
Chan, Steven K. ;
Bindlish, Rajat ;
O'Neill, Peggy E. ;
Njoku, Eni ;
Jackson, Tom ;
Colliander, Andreas ;
Chen, Fan ;
Burgin, Mariko ;
Dunbar, Scott ;
Piepmeier, Jeffrey ;
Yueh, Simon ;
Entekhabi, Dara ;
Cosh, Michael H. ;
Caldwell, Todd ;
Walker, Jeffrey ;
Wu, Xiaoling ;
Berg, Aaron ;
Rowlandson, Tracy ;
Pacheco, Anna ;
McNairn, Heather ;
Thibeault, Marc ;
Martinez-Fernandez, Jose ;
Gonzalez-Zamora, Angel ;
Seyfried, Mark ;
Bosch, David ;
Starks, Patrick ;
Goodrich, David ;
Prueger, John ;
Palecki, Michael ;
Small, Eric E. ;
Zreda, Marek ;
Calvet, Jean-Christophe ;
Crow, Wade T. ;
Kerr, Yann .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08) :4994-5007
[7]   Spatial Downscaling of SMAP Soil Moisture Using MODIS Land Surface Temperature and NDVI During SMAPVEX15 [J].
Colliander, Andreas ;
Fisher, Joshua B. ;
Halverson, Gregory ;
Merlin, Olivier ;
Misra, Sidharth ;
Bindlish, Rajat ;
Jackson, Thomas J. ;
Yueh, Simon .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (11) :2107-2111
[8]  
Crawford, 2012, US GEOLOGICAL SURVEY, P170
[9]  
Crawford M.M., Kentucky Geological Survey Information Circular, V21, DOI DOI 10.13023/KGS.IC31.12
[10]   Using landslide-inventory mapping for a combined bagged-trees and logistic-regression approach to determining landslide susceptibility in eastern Kentucky, USA [J].
Crawford, Matthew M. ;
Dortch, Jason M. ;
Koch, Hudson J. ;
Killen, Ashton A. ;
Zhu, Junfeng ;
Zhu, Yichaun ;
Bryson, Lindsey S. ;
Haneberg, William C. .
QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY, 2021, 54 (04)