Strong uniform consistency of the local linear relative error regression estimator under left truncation

被引:2
作者
Bouhadjera, Feriel [1 ]
Lemdani, Mohamed [2 ]
Said, Elias Ould [3 ]
机构
[1] Univ Montpellier, Montpellier SupAgro, INRAE, MISTEA, Montpellier, France
[2] Univ Lille, Lab Biomaths METRICS, Fac Pharm, F-59006 Lille, France
[3] Univ Littoral Cote dOpale ULCO, Lab Math Pures & Appl LMPA, 50 Rue Ferdinand Buisson, F-62100 Calais, France
关键词
Left truncated data; Local linear fit; Rate of consistency; Regression function; Relative error; Uniform almost sure consistency; PREDICTION;
D O I
10.1007/s00362-022-01325-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with a nonparametric estimator of the regression function based on the local linear method when the loss function is the mean squared relative error and the data left truncated. The proposed method avoids the problem of boundary effects and is robust against the presence of outliers. Under suitable assumptions, we establish the uniform almost sure strong consistency with a rate over a compact set. A simulation study is conducted to comfort our theoretical result. This is made according to different cases, sample sizes, rates of truncation, in presence of outliers and a comparison study is made with respect to classical, local linear and relative error estimators. Finally, an experimental prediction is given.
引用
收藏
页码:421 / 447
页数:27
相关论文
共 23 条
[1]   Functional data analysis: estimation of the relative error in functional regression under random left-truncation model [J].
Altendji, Belkais ;
Demongeot, Jacques ;
Laksaci, Ali ;
Rachdi, Mustapha .
JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (02) :472-490
[2]  
[Anonymous], 1996, Local Polynomial Modelling Its Applications: Monographs Statistics Applied Probability
[3]   CENSORED REGRESSION - LOCAL LINEAR-APPROXIMATIONS AND THEIR APPLICATIONS [J].
FAN, JQ ;
GIJBELS, I .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (426) :560-570
[4]   DESIGN-ADAPTIVE NONPARAMETRIC REGRESSION [J].
FAN, JQ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (420) :998-1004
[5]   Laws of the iterated logarithm for censored data [J].
Giné, E ;
Guillou, A .
ANNALS OF PROBABILITY, 1999, 27 (04) :2042-2067
[6]   On consistency of kernel density estimators for randomly censored data:: Rates holding uniformly over adaptive intervals [J].
Giné, E ;
Guillou, A .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2001, 37 (04) :503-522
[7]  
He SY, 1998, ANN STAT, V26, P1011
[8]  
Huber Peter J, 2004, Robust statistics, V523
[9]   Relative error prediction via kernel regression smoothers [J].
Jones, M. C. ;
Park, Heungsun ;
Shin, Key-Il ;
Vines, S. K. ;
Jeong, Seok-Oh .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (10) :2887-2898
[10]   Relative Error Prediction for Twice Censored Data [J].
Khardani, S. .
MATHEMATICAL METHODS OF STATISTICS, 2019, 28 (04) :291-306