Biohydrogen Machinery: Recent Insights, Genetic Fabrication, and Future Prospects

被引:3
作者
Madavi, Tanushree Baldeo [1 ]
Chauhan, Sushma [1 ]
Jha, Meenakshi [1 ]
Choi, Kwon-Young [2 ]
Pamidimarri, Sudheer D. V. N. [1 ]
机构
[1] Amity Univ Chhattisgarh, Amity Inst Biotechnol, Raipur 493225, Chhattisgarh, India
[2] Ajou Univ, Coll Engn, Dept Environm Engn, Suwon, Gyeonggi Do, South Korea
关键词
Biohydrogen; Biophotolysis; Dark fermentation; Genetic engineering; Hydrogen production; FERMENTATIVE HYDROGEN-PRODUCTION; SP STRAIN PCC-6803; ESCHERICHIA-COLI; IRON-HYDROGENASE; ACTIVE-SITE; CRYSTAL-STRUCTURE; H-2; PRODUCTION; DEHYDROGENASE; METABOLISM; DEFICIENT;
D O I
10.1002/ceat.202000527
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The increase in global carbon footprints forced mankind to look for alternative carbon-free fuels. Biohydrogen is an ideal fuel, free of carbon footprint, which has the potential to replace fossil fuels. Its high energy content per gram has a great commercial value. Bacteria, cyanobacteria, and algae are developed with various cellular machineries for hydrogen production. Detailed information on these hydrogen-producing cellular machineries, their mechanism of catalysis, and modern genetic engineering and fabrication studies for the enhancement of hydrogen production are reviewed and discussed.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 49 条
[1]   Increased H2 production in the cyanobacterium Synechocystis sp strain PCC 6803 by redirecting the electron supply via genetic engineering of the nitrate assimilation pathway [J].
Baebprasert, Wipawee ;
Jantaro, Saowarath ;
Khetkorn, Wanthanee ;
Lindblad, Peter ;
Incharoensakdi, Aran .
METABOLIC ENGINEERING, 2011, 13 (05) :610-616
[2]   Hydrogen production from phototrophic microorganisms: Reality and perspectives [J].
Bolatkhan, Kenzhegul ;
Kossalbayev, Bekzhan D. ;
Zayadan, Bolatkhan K. ;
Tomo, Tatsuya ;
Veziroglu, T. Nejat ;
Allakhuerdiev, Suleyman I. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) :5799-5811
[3]   Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria [J].
Bothe, Hermann ;
Schmitz, Oliver ;
Yates, M. Geoffrey ;
Newton, William E. .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2010, 74 (04) :529-551
[4]   Bioassembly of complex iron-sulfur enzymes: hydrogenases and nitrogenases [J].
Britt, R. David ;
Rao, Guodong ;
Tao, Lizhi .
NATURE REVIEWS CHEMISTRY, 2020, 4 (10) :542-549
[5]   Heterocyst-specific excision of the Anabaena sp strain PCC 7120 hupL element requires xisC [J].
Carrasco, CD ;
Holliday, SD ;
Hansel, A ;
Lindblad, P ;
Golden, JW .
JOURNAL OF BACTERIOLOGY, 2005, 187 (17) :6031-6038
[6]   Succinate dehydrogenase and other respiratory pathways in thylakoid membranes of Synechocystis sp strain PCC 6803:: Capacity comparisons and physiological function [J].
Cooley, JW ;
Vermaas, WFJ .
JOURNAL OF BACTERIOLOGY, 2001, 183 (14) :4251-4258
[7]   Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex [J].
Cournac, L ;
Guedeney, G ;
Peltier, G ;
Vignais, PM .
JOURNAL OF BACTERIOLOGY, 2004, 186 (06) :1737-1746
[8]   Hydrogen production by Cyanobacteria [J].
Dutta, D ;
De, D ;
Chaudhuri, S ;
Bhattacharya, SK .
MICROBIAL CELL FACTORIES, 2005, 4 (1)
[9]   Structure-function relationships of alternative nitrogenases [J].
Eady, RR .
CHEMICAL REVIEWS, 1996, 96 (07) :3013-3030
[10]   Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases [J].
Fontecilla-Camps, Juan C. ;
Volbeda, Anne ;
Cavazza, Christine ;
Nicolet, Yvain .
CHEMICAL REVIEWS, 2007, 107 (10) :4273-4303