Belief space-guided approach to self-adaptive particle swarm optimization

被引:4
作者
von Eschwege, Daniel [1 ]
Engelbrecht, Andries [1 ,2 ,3 ]
机构
[1] Stellenbosch Univ, Dept Ind Engn, Stellenbosch, South Africa
[2] Stellenbosch Univ, Comp Sci Div, Stellenbosch, South Africa
[3] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Mubarak Al Abdullah, Kuwait
关键词
Self-adaptive; Particle swarm optimization; Belief space;
D O I
10.1007/s11721-023-00232-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization (PSO) performance is sensitive to the control parameter values used, but tuning of control parameters for the problem at hand is computationally expensive. Self-adaptive particle swarm optimization (SAPSO) algorithms attempt to adjust control parameters during the optimization process, ideally without introducing additional control parameters to which the performance is sensitive. This paper proposes a belief space (BS) approach, borrowed from cultural algorithms (CAs), towards development of a SAPSO. The resulting BS-SAPSO utilizes a belief space to direct the search for optimal control parameter values by excluding non-promising configurations from the control parameter space. The resulting BS-SAPSO achieves an improvement in performance of 3-55% above the various baselines, based on the solution quality of the objective function values achieved on the functions tested.
引用
收藏
页码:31 / 78
页数:48
相关论文
共 44 条
[11]  
Gavana A., 2022, GLOBAL OPTIMIZATION
[12]   Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm [J].
Harrison, Kyle Robert ;
Engelbrecht, Andries P. ;
Ombuki-Berman, Beatrice M. .
SWARM AND EVOLUTIONARY COMPUTATION, 2018, 41 :20-35
[13]   Self-adaptive particle swarm optimization: a review and analysis of convergence [J].
Harrison, Kyle Robert ;
Engelbrecht, Andries P. ;
Ombuki-Berman, Beatrice M. .
SWARM INTELLIGENCE, 2018, 12 (03) :187-226
[14]  
Harrison KR, 2017, 2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), P1606
[15]  
Harrison KR, 2016, IEEE C EVOL COMPUTAT, P431, DOI 10.1109/CEC.2016.7743826
[16]   A note on the learning automata based algorithms for adaptive parameter selection in PSO [J].
Hashemi, A. B. ;
Meybodi, M. R. .
APPLIED SOFT COMPUTING, 2011, 11 (01) :689-705
[17]  
Jalili S., 2019, SOCIOCULTURAL INSPIR, P93, DOI 10.1007/978-981-13-6569-0_5
[18]   A Cultural Algorithm for Optimal Design of Truss Structures [J].
Jalili, Shahin ;
Hosseinzadeh, Yousef .
LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2015, 12 (09) :1721-1747
[19]   Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm [J].
Jiang, M. ;
Luo, Y. P. ;
Yang, S. Y. .
INFORMATION PROCESSING LETTERS, 2007, 102 (01) :8-16
[20]   An Improved Self-Adaptive Particle Swarm Optimization Algorithm with Simulated Annealing [J].
Jun, Shu ;
Jian, Li .
2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 3, PROCEEDINGS, 2009, :396-+