Belief space-guided approach to self-adaptive particle swarm optimization

被引:4
作者
von Eschwege, Daniel [1 ]
Engelbrecht, Andries [1 ,2 ,3 ]
机构
[1] Stellenbosch Univ, Dept Ind Engn, Stellenbosch, South Africa
[2] Stellenbosch Univ, Comp Sci Div, Stellenbosch, South Africa
[3] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Mubarak Al Abdullah, Kuwait
关键词
Self-adaptive; Particle swarm optimization; Belief space;
D O I
10.1007/s11721-023-00232-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Particle swarm optimization (PSO) performance is sensitive to the control parameter values used, but tuning of control parameters for the problem at hand is computationally expensive. Self-adaptive particle swarm optimization (SAPSO) algorithms attempt to adjust control parameters during the optimization process, ideally without introducing additional control parameters to which the performance is sensitive. This paper proposes a belief space (BS) approach, borrowed from cultural algorithms (CAs), towards development of a SAPSO. The resulting BS-SAPSO utilizes a belief space to direct the search for optimal control parameter values by excluding non-promising configurations from the control parameter space. The resulting BS-SAPSO achieves an improvement in performance of 3-55% above the various baselines, based on the solution quality of the objective function values achieved on the functions tested.
引用
收藏
页码:31 / 78
页数:48
相关论文
共 44 条
[1]  
Auger A., 2009, Definitions Technical Report RR-6829
[2]  
Beielstein T., 2002, 531 SFB
[3]   Impacts of Coefficients on Movement Patterns in the Particle Swarm Optimization Algorithm [J].
Bonyadi, Mohammad Reza ;
Michalewicz, Zbigniew .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (03) :378-390
[4]   Defining a standard for particle swarm optimization [J].
Bratton, Daniel ;
Kennedy, James .
2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, :120-+
[5]   SELECTOR: Selecting a Representative Benchmark Suite for Reproducible Statistical Comparison [J].
Cenikj, Gjorgjina ;
Lang, Ryan Dieter ;
Engelbrecht, Andries Petrus ;
Doerr, Carola ;
Korosec, Peter ;
Eftimov, Tome .
PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, :620-629
[6]  
Dong C., 2008, Proceedings of the 2008 International Conference on Computer Science and Software Engineering, V1, P1195, DOI 10.1109/CSSE.2008.295
[7]   Roaming Behavior of Unconstrained Particles [J].
Engelbrecht, A. P. .
2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, :104-111
[8]  
Engelbrecht A. P., 2007, Computational Intelligence
[9]   Stability-Guided Particle Swarm Optimization [J].
Engelbrecht, Andries .
SWARM INTELLIGENCE, ANTS 2022, 2022, 13491 :360-369
[10]  
Engelbrecht AP, 2010, LECT NOTES COMPUT SC, V6234, P191, DOI 10.1007/978-3-642-15461-4_17