Enhancement of thermal and mechanical properties of microencapsulated phase change materials with graphene oxide

被引:31
作者
Hu, Meiyong [1 ,2 ]
Wang, Dawei [1 ,2 ]
Kokogiannakis, Georgios [3 ]
Darkwa, Jo [4 ]
Li, Yilin [5 ]
Wang, Li [1 ,2 ]
Xu, Qing [1 ,6 ]
Su, Weiguang [1 ,2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Mech Engn, Jinan 250353, Peoples R China
[2] Shandong Mech Design & Res Inst, Jinan 250353, Peoples R China
[3] Univ Wollongong, Sustainable Bldg Res Ctr, Wollongong, NSW 2519, Australia
[4] Univ Nottingham, Fac Engn, Univ Pk, Nottingham NG7 2RD, England
[5] Univ Shanghai Sci & Technol, Sch Environm & Architecture, Shanghai 200093, Peoples R China
[6] Tianjin Univ Sci & Technol, Coll Mech Engn, Tianjin Key Lab Integrated Design & Online Monitor, Tianjin 300222, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
Phase change material; Microencapsulation; Emulsion polymerization; Graphene oxide; Thermal conductivity enhancement; CHANGE MICROCAPSULES; N-OCTADECANE; SHELL; FABRICATION;
D O I
10.1016/j.cej.2023.147855
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The low thermal conductivity of microencapsulated phase change materials (MEPCMs) limits the latent heat charging and discharging rates for various applications. To overcome this limitation, we prepared MEPCM by co -surfactants of polyvinyl alcohol and high thermal conductivity graphene oxide (GO) through an emulsion polymerization process. Fourier transformation infrared spectroscopy and Raman spectra results verified that GO was successfully added to the MEPCMs' hybrid polymer shell. The core material content of MEPCM and GO/ MEPCM was within the range of 78.4 %-91.8 % according to differential scanning calorimetry testing results. According to the comparison of fabricated microcapsule samples, the dosage of 0-0.5 w.t.% GO can reduce the loss of shell monomers and overcome the supercooling and leakage problem of MEPCM. Thermogravimetric results exhibited that the thermal stability of MEPCM samples increased by 66 degrees C after encapsulation, and this value further increased by 7-21 degrees C with the addition of 0.1-0.5 w.t.% GO. The thermal conductivity of MEPCM samples increased from 0.32 W/m center dot K to 1.04 W/m center dot K with a dosage of 0.5 w.t.% GO. Meanwhile, Young's modulus and the hardness of GO/MEPCM samples with 0.5 w.t.% GO increased by 0.2 GPa and 0.1 GPa, respectively.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Heat transfer enhancement of microencapsulated phase change material by addition of nanoparticles for a latent heat thermal energy storage system [J].
Sami, Samaneh ;
Etesami, Nasrin .
ENERGY REPORTS, 2021, 7 :4930-4940
[32]   Microencapsulated phase change material suspensions for cool thermal energy storage [J].
Trivedi, G. V. N. ;
Parameshwaran, R. .
MATERIALS CHEMISTRY AND PHYSICS, 2020, 242
[33]   Investigations on thermal properties of microencapsulated phase-change materials with different acrylate-based copolymer shells as thermal insulation materials [J].
Ma, Yanhong ;
Xie, Qifei ;
Wang, Xinzhong .
JOURNAL OF APPLIED POLYMER SCIENCE, 2019, 136 (31)
[34]   Advancements in organic and inorganic shell materials for the preparation of microencapsulated phase change materials for thermal energy storage applications [J].
Maiti, Tushar Kanti ;
Dixit, Prakhar ;
Suhag, Amit ;
Bhushan, Sakchi ;
Yadav, Aparna ;
Talapatra, Namita ;
Chattopadhyay, Sujay .
RSC SUSTAINABILITY, 2023, 1 (04) :665-697
[35]   A review on microencapsulated phase change materials in building materials [J].
Chaudhari, Soham Sharad ;
Patil, Niraj Govinda ;
Mahanwar, Prakash Anna .
JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, 2024, 21 (01) :173-198
[36]   Microencapsulated Phase Change Materials and Thermal-Regulating Fabrics [J].
Xing, Jian-Wei ;
Xu, Cheng-Shu ;
Yan, Ren ;
Shi, Wen-Zhao ;
Liu, Jin-Shu .
TEXTILE BIOENGINEERING AND INFORMATICS SYMPOSIUM PROCEEDINGS, VOLS 1-3, 2013, :131-136
[37]   Graphene oxide/polyurethane-based solid solid phase change materials with enhanced mechanical properties [J].
Zhou, Yan ;
Liu, Xiangdong ;
Sheng, Dekun ;
Lin, Changhong ;
Ji, Fance ;
Dong, Li ;
Xu, Shaobin ;
Wu, Haohao ;
Yang, Yuming .
THERMOCHIMICA ACTA, 2017, 658 :38-46
[38]   Thermal Load Adaptive Surfaces with Microencapsulated Phase Change Materials [J].
Voevodin, A. A. ;
Muratore, C. ;
Aouadi, S. A. .
PROCEEDINGS OF THE 7TH IASME/WSEAS INTERNATIONAL CONFERENCE ON HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT (HTE'09), 2009, :44-+
[39]   Structure and thermal stability of microencapsulated phase-change materials [J].
Zhang, XX ;
Tao, XM ;
Yick, KL ;
Wang, XC .
COLLOID AND POLYMER SCIENCE, 2004, 282 (04) :330-336
[40]   Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems [J].
Sami, S. ;
Sadrameli, S. M. ;
Etesami, N. .
APPLIED THERMAL ENGINEERING, 2018, 130 :1416-1424